Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (5): 1340.doi: 10.7503/cjcu20210001
• Review • Previous Articles Next Articles
YANG Ruiqi, YU Xin(), LIU Hong(
)
Received:
2021-01-04
Online:
2021-05-10
Published:
2021-03-06
Contact:
YU Xin,LIU Hong
E-mail:ifc_yux@ujn.edu.cn;ifc_liuh@ujn.edu.cn
Supported by:
CLC Number:
TrendMD:
YANG Ruiqi, YU Xin, LIU Hong. Scientific Study of Photocatalytic Material Based on Sn3O4[J]. Chem. J. Chinese Universities, 2021, 42(5): 1340.
Sample | Decay time/ns | Relative amplitude(%) | Average lifetime/ns | ||
---|---|---|---|---|---|
τ1 | τ2 | f1 | f2 | τ* | |
Sn3O4 | 1.41 | 26.12 | 23.85 | 76.15 | 25.71 |
Sn3O4/rGO | 1.02 | 28.16 | 12.24 | 87.76 | 28.02 |
Sample | Decay time/ns | Relative amplitude(%) | Average lifetime/ns | ||
---|---|---|---|---|---|
τ1 | τ2 | f1 | f2 | τ* | |
Sn3O4 | 1.41 | 26.12 | 23.85 | 76.15 | 25.71 |
Sn3O4/rGO | 1.02 | 28.16 | 12.24 | 87.76 | 28.02 |
33 | Wang H., Liu W., Ma J., Liang Q., Qin W., Lartey O. P., Feng X., Int. J. Miner. Metall. Mater., 2020, 27(6), 830—839 |
34 | Yu X., Zhang J., Zhao Z. H., Guo W. B., Qiu J. C., Mou X. N., Li A. X., Claveria J. P., Liu H., Nano Energy, 2015, 16, 207—217 |
35 | Akti F., Appl. Surf. Sci., 2018, 455, 931—939 |
36 | Lin Y., Wu S., Yang C., Chen M., Li X., Appl. Catal. B: Environ., 2019, 245, 71—86 |
37 | Lv M. F., Yang L. Q., Wang X. L., Cheng X. L., Song Y., Yin Y. K., Liu H. M., Han Y. J., Cao K. S., Ma W., Qi G., Li S. T., RSC Adv., 2019, 9(69), 40694—40707 |
38 | Ji Y., Song G., Yang R., Ding L., Wang A., Ren N., Zhang J., Yu X., J. Nanosci. Nanotechnol., 2021, 21, 2647—2652 |
39 | Yu X., Wang L. F., Zhang J., Guo W. B., Zhao Z. H., Qin Y., Mou X. N., Li A. Z., Liu H., J. Mater. Chem. A, 2015, 3(37), 19129—19136 |
40 | Li C. M., Yu S. Y., Dong H. J., Liu C. B., Wu H. J., Che H. N., Chen G., Appl. Catal. B: Environ., 2018, 238, 284—293 |
41 | Hu J. L., Li X. Y., Wang X. D., Li Q. S., Wang F. P., Dalton Trans., 2019, 48(24), 8937—8947 |
42 | Sun M., Yan T., Wu T. T., He Y. H., Shao Y., Wei D., Du B., Mater. Res. Bull., 2018, 103, 104—114 |
43 | Yu X., Zhao Z. H., Sun D. H., Ren N., Yu J. H., Yang R. Q., Liu H., Appl. Catal. B: Environ., 2018, 227, 470—476 |
44 | Yu X., Ren N., Qiu J., Sun D., Li L., Liu H., Sol. Energy Mat. Sol. Cells, 2018, 183, 41—47 |
45 | Xiao J. D., Xie Y. B., Li C. H., Kim J. H., Tang K. X., Cao H. B., Catal. Today, 2018, 307, 147—153 |
46 | Yang R. Q., Ji Y. C., Zhang J., Zhang R. T., Liu F., Chen Y. K., Liang L. L., Han S. W., Yu X., Liu H., Catal. Today, 2019, 335, 520—526 |
47 | Han Y. Q., Wei M. M., Qu S. Y., Zhong M., Han L. J., Yang H. D., Liu Y., Su B. T., Lei Z. Q., Ceram. Int., 2020, 46, 24060—24070 |
48 | Yu X., Zhao Z., Zhang J., Guo W., Li L., Liu H., Wang Z. L., CrystEngComm, 2017, 19, 129—136 |
49 | Yang R. Q., Ji Y. C., Li Q, Zhao Z. H., Zhang R. T., Liang L. L., Liu F., Chen Y. K., Han S. W., Yu X., Liu H., Appl. Catal. B: Environ., 2019, 256, 117798 |
50 | Wang L., Gao F., Wang A., Chen X., Li H., Zhang X., Zheng H., Ji R., Li B., Yu X., Liu J., Gu Z., Chen F., Chen C., Adv. Mater., 2020, 32(48), 2005423 |
51 | Zhang Z., Zhang J., Chen N., Qu L., Energy Environ. Sci., 2012, 5(10), 8869—8890 |
52 | Yu X., Zhao Z. H., Ren N., Liu J., Sun D. H., Ding L. H., Liu H., ACS Sustain. Chem. Eng., 2018, 6(9), 11775—11782 |
53 | Carraher C. E., Battin A. J., Roner M. R., J. Inorg. Organomet. Polym. Mater., 2013, 23(1), 61—73 |
54 | Li W., Zhang Q., Zheng G., Seh Z. W., Yao H., Cui Y., Nano Lett., 2013, 13(11), 5534—5540 |
55 | Yang L. Q., Lv M. F., Song Y., Yin K. Y., Wang X. L., Cheng X. L., Cao K. S., Li S. T., Wang C., Yao Y. F., Luo W. J., Zou Z. G., Appl. Catal. B: Environ., 2020, 279, 119341 |
56 | Xu L., Chen W. Q., Ke S. Q., Zhang S. M., Zhu M., Zhang Y., Shi W. Y., Horike S. S., Tang L., Chem. Eng. J., 2020, 382, 122810 |
57 | Halmann M., Nature, 1978, 275(5676), 115—116 |
58 | Francke R., Schille B., Roemelt M., Chem. Rev., 2018, 118(9), 4631—4701 |
59 | Chen Z., Gao M. R., Duan N. Q., Zhang J. G., Zhang Y. Q., Fan T. T., Zhang J. W., Dong Y. Y., Li J. H., Liu Q. X., Yi X. D., Luo J. L., Appl. Catal. B: Environ., 2020, 277, 119252 |
60 | Han N., Ding P., He L., Li Y., Li Y., Adv. Energy Mater., 2019, 10, 1902338 |
61 | Liu L. X., Zhou Y., Chang Y. C., Zhang J. R., Jiang L. P., Zhu W. L., Lin Y. H., Nano Energy, 2020, 77, 105296 |
62 | Kim I. D., Rothschild A., Tuller H. L., Acta Mater., 2013, 61(3), 974—1000 |
63 | Sumana P. H., Felixa A. A., Tuller H. L., Varela J. A., Orlandi M. O., Sens. Actuators B: Chem., 2015, 208, 122—127 |
64 | Zeng W. W., Liu Y. Z., Chen G. L., Zhan H. R., Mei J., Luo N., He Z. K., Tang C. Y., RSC Adv., 2020, 10(50), 29843—29854 |
65 | Zeng W. W., Liu Y. Z., Mei J., Tang C. Y., Luo K., Li S. M., Zhan H. R., He Z. K., Sens. Actuators B: Chem., 2019, 301, 127010 |
66 | Yu X., Zhao Z., Zhang J., Guo W., Qiu J., Li D., Li Z., Mou X., Li L., Li A., Liu H., Small, 2016, 12(20), 2759—2767 |
67 | Wu W., Bai S., Yuan M., Qin Y., Wang Z. L., Jing T., ACS Nano, 2012, 6(7), 6231—6235 |
68 | Wang J., Xu Q., Xia W. W., Shu Y., Jin D. Q., Zang Y., Hu X. Y., Sens. Actuators B: Chem., 2018, 271, 215—224 |
69 | Wang H. M., Xu Q., Wang J., Du W., Liu F. P., Hu X. Y., Biosens. Bioelectro., 2018, 100, 105—114 |
70 | Xia W., Qian H., Zeng X., Dong J., Wang J., Xu Q., J. Phy. Chem. C, 2017, 121, 19036—19043 |
71 | Xu R., Du Y., Leng D. Q., Liu L., Li Y. Y., Ren X., Fan D. W., Wang H., Wei Q., Chem. Commun., 2020, 56, 7455—7458 |
1 | Fujishima A., Honda K., Nature, 1972, 238(5358), 37—38 |
2 | Carey J. H., Lawrence J., Tosine H. M., Bull. Environ. Contam. Toxicol., 1976, 16(6), 697—701 |
3 | Sun Z., Talreja N., Tao H., Texter J., Muhler M., Strunk J., Chen J., Angew. Chem. Int. Ed., 2017, 57(26), 7610—7627 |
4 | Wang L., Zhang X., Yu X., Gao F., Shen Z., Zhang X., Ge S., Liu J., Gu Z., Chen C., Adv. Mater., 2019, 31(33), 1901965 |
5 | Yu X., Jin X., Chen X., Wang A., Zhang J., Zhang J., Zhao Z., Gao M., Razzari L., Liu H., ACS Nano, 2020, 14(10), 13876—13885 |
6 | Ji Y., Yang R., Wang L., Song G., Wang A., Lv Y., Gao M., Zhang J., Yu X., Chem. Eng. J., 2020, 402, 1262226 |
7 | Yu X., Zhao Z. Z., Sun D. H., Ren N., Ding L. H., Yang R. Q., Ji Y. C., Li L. L., Liu H, Chem. Commun., 2018, 54, 6056—6059 |
8 | Zheng J. Y., Lyu Y. H., Xie C., Wang R. L., Tao L., Wu H. B., Zhou H. J., Jiang S. P., Wang S. Y., Adv. Mater., 2018, 30(31), 1801773 |
9 | Manikandan M., Tanabe T., Li P., Ueda S., Ramesh G. V., Kodiyath R., Wang J. J., Hara T., Dakshanamoorthy A., Ishihara S., Ariga K., Ye J. H., Umezawa N., Abe H., ACS Appl. Mater. Interfaces, 2014, 6(6), 3790—3793 |
10 | He Y. H., Li D. Z., Chen J., Shao Y., Xian J. J., Zheng X. Z., Wang P., RSC Adv., 2014, 4(3), 1266—1269 |
11 | Berengue O. M., Simon R. A., Chiquito A. J., Dalmaschio C. J., Leite E. R., Guerreiro H. A., Guimarães F. E. G., J. Appl. Phys., 2010, 107(3), 033717 |
12 | Villars P., O⁃Sn Binary Phase Diagram 30—100 at.% Sn, Material Phases Data System(MPDS), SpringerMaterials, Uitznau, sd_1703036, sd_0304865, 2014 |
13 | Wang J. J., Umezawa N., Hosono H., Adv. Energy Mater., 2016, 6(1), 1501190 |
14 | Tanabe T., Tanikawa T., Nakamori K., Ueda S., Nanzai B., Matsubara Y., Matsumoto F., Int. J. Hydrog. Energy, 2020, 45(53), 28607—28615 |
15 | Balgude S. D., Sethi Y. A., Kale B. B., Munirathnam N. R., Amalnerkarb D. P., Adhyapak P. V., RSC Adv., 2016, 6(98), 95663—95669 |
16 | Deng H. M., Hossenlopp J. M., J. Phys. Chem. B, 2005, 109(1), 66—73 |
17 | Song H., Son S. Y., Kim S. K., Gun Y. J., Nano Res., 2015, 8(11), 3553—3561 |
18 | Song G., Wang L., Yang R., Ji Y., Zhang R., Yang L., Ding L., Wang A., Ren N., Yu X., J. Nanosci. Nanotechnol., 2020, 20, 5943—5949 |
19 | Liu Z., Wang L., Yu X., Zhang J., Yang R., Zhang X., Ji Y., Wu M., Deng L., Li L., Wang Z. L., Adv. Funct. Mater., 2019, 29, 1807279 |
20 | Xia W. W., Wang H. B., Zeng X. H., Han J., Zhu J., Zhou M., Wu S. D., CrystEngComm, 2014, 16(30), 6841—6847 |
21 | Damaschio C. J., Berengue O. M., Stroppa D. G., Simon R. A., Ramirez A. J., Schreiner W. H., Chiquito A. J., Leite E. R., J. Cryst. Growth, 2010, 312(20), 2881—2886 |
22 | Balgude S., Sethi Y., Kale B., Amalnerkar D., Adhyapak P., Mater. Chem. Phys., 2019, 221, 493—500 |
23 | Mone P., Mardikar S., Balgude S., Nano⁃Structures and Nano⁃bjects, 2020, 24, 100615 |
24 | Yang R. Q., Ji Y. C., Wang L. W., Song G. X., Wang A. Z., Ding L. H., Ren N., Lv Y. W., Zhang J., Yu X., ACS Appl. Nano Mater., 2020, 3(9), 9268—9275 |
25 | Balgude S., Sethi Y., Gaikwad A., Kale B., Amalnerkard D., Adhyapak P., Nanoscale, 2020, 12, 8502—8510 |
26 | Zeng D. B., Yu C. L., Fan Q. Z., Zeng J. L., Wei L. F., Li Z. S., Yang K., Ji H. B., Chem. Eng. J., 2020, 391, 123607 |
27 | Zhou Z. K., Peng X. N., Yang Z. J., Zhang Z. W., Li M., Su X. R., Zhang Q., Shan X. Y., Wang Q. Q., Zhang Z. Y., Nano Lett., 2011, 11(1), 49—55 |
28 | Li M. Y., Yuan N., Tang Y. W., Pei L., Zhu Y. D., Liu J. X., Bai L. H., Li M. Y., J. Mater. Sci. Technol., 2019, 35(4), 604—609 |
29 | Cheng Z., Ma Y., Yang L., Cheng F., Huang Z. J., Natan A., Li H. Y., Chen Y., Cao D. X., Huang Z. F., Wang Y. H., Liu Y. M., Yang R. D., Zhu H. L., Adv. Opt. Mater., 2019, 7(9), 1801816 |
30 | Yang R. Q., Liang N., Chen X. Y., Wang L. W., Song G. X., Ji Y. C., Ren N., Lv Y. W., Zhang J., Yu X., Int. J. Miner. Metall. Mater., 2021, 18, 150—159 |
31 | Li S. G., Liu Z. Y., Qu Z. H., Piao C. C., Liu J. Z., Xu D., Li X. J., Wang J., Song Y. T., J. Photochem. Photobiol. A, 2020, 389, 112246 |
32 | Yu X., Wang S., Zhang X., Qi A., Qiao X., Liu Z., Wu M., Li L., Wang Z. L., Nano Energy, 2018, 46, 29—38 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[3] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[4] | LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong, YANG Yunhui, HU Rong. A Ratiometric Electrochemical Sensor Based on Silver Ion Interaction with DNA for the Detection of Silver Ion [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220202. |
[5] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[6] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[7] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[8] | WANG Junyang, LIU Zheng, ZHANG Qian, SUN Chunyan, LI Hongxia. Application of DNA Silver Nanoclusters in the Fluorescence Biosensors based on Functional Nucleic Acids [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220010. |
[9] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[10] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[11] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[12] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[13] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
[14] | WEI Chuangyu, CHEN Yanli, JIANG Jianzhuang. Fabrication of Electrochemical Sensor for Dopamine and Uric Acid Based on a Novel Dimeric Phthalocyanine-involved Quintuple-decker Modified Indium Tin Oxide Electrode [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210582. |
[15] | LI Chenchen, NA Yong. g-C3N4/CdS/Ni Composite as a Bifunctional Photocatalyst for H2 Generation and 5-Hydroxymethylfurfural Oxidation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2896. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||