Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (9): 20220312.doi: 10.7503/cjcu20220312
• Review • Previous Articles Next Articles
LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua()
Received:
2022-05-08
Online:
2022-09-10
Published:
2022-06-24
Contact:
SHEN Shaohua
E-mail:shshen_xjtu@mail.xjtu.edu.cn
Supported by:
CLC Number:
TrendMD:
LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation[J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312.
Photocatalyst | Hydrogen evolution rate | Light source | Sacrificial agent | Ref. |
---|---|---|---|---|
Pt/TiO2 | 52.72 mmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 20%(volume fraction) CH3OH | [ |
Pt/CdS | 47.41 mmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 20%(mass fraction) lactic acid | [ |
CdS@CDs/Pt | 45.5 mmol·g-1·h-1 | 300 W Xe lamp | Na2S/Na2SO3 | [ |
Pt/MOF(Al?TCPP) | 129 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | 5%(volume fraction) TEOA | [ |
Pt/MOF(HNTM) | 201.9 μmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 8%(volume fraction) TEOA | [ |
Pt/MOF(MNSs) | 11320 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 0.1 mol/L Ascorbic acid | [ |
Co?CCN/PTI | 3538 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 10%(volume fraction) TEOA | [ |
Pt1/C3N4 | 604.9 μmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 10%(volume fraction) TEOA | [ |
Pt/TpPa?1?COF | 719 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | Ascorbic acid | [ |
Ni/SrTiO3(Al) | 498 μmol·g-1·h-1 | 280 W Xe lamp | — | [ |
Ni/ZnIn2S4 | 4220 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 10%(volume fraction) TEOA | [ |
Ni?S/MOF | 1360 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | 20%(volume fraction) TEOA | [ |
Pd1/C3N4 | 6688 μmol·g-1·h-1 | Solar simulator | 10%(volume fraction) TEOA | [ |
Co1?PCN | 216 μmol·g-1·h-1 | 300 W Xe lamp AM 1.5G | 10%(volume fraction) TEOA | [ |
CN?0.2Ni?HO | 354.9 μmol·g-1·h-1 | 300 W Xe lamp | 10%(volume fraction) TEOA | [ |
PCNNi?3 | 26.6 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | — | [ |
Co1P?PCN | 410.3 μmol·g-1·h-1 | 300 W Xe lamp λ>300 nm | — | [ |
Table 1 Previously reported single-atom photocatalysts for photocatalytic hydrogen evolution
Photocatalyst | Hydrogen evolution rate | Light source | Sacrificial agent | Ref. |
---|---|---|---|---|
Pt/TiO2 | 52.72 mmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 20%(volume fraction) CH3OH | [ |
Pt/CdS | 47.41 mmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 20%(mass fraction) lactic acid | [ |
CdS@CDs/Pt | 45.5 mmol·g-1·h-1 | 300 W Xe lamp | Na2S/Na2SO3 | [ |
Pt/MOF(Al?TCPP) | 129 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | 5%(volume fraction) TEOA | [ |
Pt/MOF(HNTM) | 201.9 μmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 8%(volume fraction) TEOA | [ |
Pt/MOF(MNSs) | 11320 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 0.1 mol/L Ascorbic acid | [ |
Co?CCN/PTI | 3538 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 10%(volume fraction) TEOA | [ |
Pt1/C3N4 | 604.9 μmol·g-1·h-1 | 300 W Xe lamp λ>400 nm | 10%(volume fraction) TEOA | [ |
Pt/TpPa?1?COF | 719 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | Ascorbic acid | [ |
Ni/SrTiO3(Al) | 498 μmol·g-1·h-1 | 280 W Xe lamp | — | [ |
Ni/ZnIn2S4 | 4220 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | 10%(volume fraction) TEOA | [ |
Ni?S/MOF | 1360 μmol·g-1·h-1 | 300 W Xe lamp λ>380 nm | 20%(volume fraction) TEOA | [ |
Pd1/C3N4 | 6688 μmol·g-1·h-1 | Solar simulator | 10%(volume fraction) TEOA | [ |
Co1?PCN | 216 μmol·g-1·h-1 | 300 W Xe lamp AM 1.5G | 10%(volume fraction) TEOA | [ |
CN?0.2Ni?HO | 354.9 μmol·g-1·h-1 | 300 W Xe lamp | 10%(volume fraction) TEOA | [ |
PCNNi?3 | 26.6 μmol·g-1·h-1 | 300 W Xe lamp λ>420 nm | — | [ |
Co1P?PCN | 410.3 μmol·g-1·h-1 | 300 W Xe lamp λ>300 nm | — | [ |
1 | Liu W., Zhang H., Li C., Wang X., Liu J., Zhang X., J. Energy Chem., 2020, 47, 333—345 |
2 | Wang L., Huang L., Liang F., Liu S., Wang Y., Zhang H., Chin. J. Catal., 2017, 38(9), 1528—1539 |
3 | Liu L., Corma A., Chem. Rev., 2018, 118(10), 4981—5079 |
4 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3(8), 634—641 |
5 | Yan X., Dong C. L., Huang Y. C., Jia Y., Zhang L., Shen S., Chen J., Yao X., Small Methods, 2019, 3(9), 1800439 |
6 | Han X., Ling X., Yu D., Xie D., Li L., Peng S., Zhong C., Zhao N., Deng Y., Hu W., Adv. Mater., 2019, 31(49), 1905622 |
7 | Feng J., Gao H., Zheng L., Chen Z., Zeng S., Jiang C., Dong H., Liu L., Zhang S., Zhang X., Nat. Commun., 2020, 11(1), 4341 |
8 | Lu B., Liu Q., Chen S., ACS Catal., 2020, 10(14), 7584—7618 |
9 | Doherty F., Wang H., Yang M., Goldsmith B. R., Catal. Sci. Technol., 2020, 10(17), 5772—5791 |
10 | Xia D., Liu H., Xu B., Wang Y., Liao Y., Huang Y., Ye L., He C., Wong P. K., Qiu R., Appl. Catal. B: Environ., 2019, 245, 177—189 |
11 | Cheng C., Zhang X., Wang M., Wang S., Yang Z., Phys. Chem. Chem. Phys., 2018, 20(5), 3504—3513 |
12 | Krishnan R., Wu S. Y., Chen H. T., Phys. Chem. Chem. Phys., 2019, 21(23), 12201—12208 |
13 | Liu G., Huang Y., Lv H., Wang H., Zeng Y., Yuan M., Meng Q., Wang C., Appl. Catal. B: Environ., 2021, 284, 119683 |
14 | Xing J., Chen J., Li Y., Yuan W., Zhou Y., Zheng L., Wang H., Hu P., Wang Y., Zhao H., Wang Y., Yang H., Chem. Eur. J., 2014, 20(8), 2138—2144 |
15 | Zeng L., Xue C., Nano Res., 2020, 14(4), 934—944 |
16 | Zhou L., Martirez J. M. P., Finzel J., Zhang C., Swearer D. F., Tian S., Robatjazi H., Lou M., Dong L., Henderson L., Christopher P., Carter E. A., Nordlander P., Halas N. J., Nat. Energy, 2020, 5(1), 61—70 |
17 | Wu J., Chen J., Huang Y., Feng K., Deng J., Huang W., Wu Y., Zhong J., Li Y., Sci. Bull., 2019, 64(24), 1875—1880 |
18 | Song L. N., Zhang W., Wang Y., Ge X., Zou L. C., Wang H. F., Wang X. X., Liu Q. C., Li F., Xu J. J., Nat. Commun., 2020, 11(1), 2191 |
19 | Zhao W., Wang J., Yin R., Li B., Huang X., Zhao L., Qian L., J. Colloid Interface Sci., 2020, 564, 28—36 |
20 | Wan X., Liu X., Li Y., Yu R., Zheng L., Yan W., Wang H., Xu M., Shui J., Nat. Catal., 2019, 2(3), 259—268 |
21 | Zhang Q., Guan J., Solar RRL, 2020, 4(9), 2000283 |
22 | Qin R., Liu K., Wu Q., Zheng N., Chem. Rev., 2020, 120(21), 11810—11899 |
23 | Liu D., He Q., Ding S., Song L., Adv. Energy Mater., 2020, 10(32), 2001482 |
24 | Chen Y., Ji S., Sun W., Lei Y., Wang Q., Li A., Chen W., Zhou G., Zhang Z., Wang Y., Zheng L., Zhang Q., Gu L., Han X., Wang D., Li Y., Angew. Chem. Int. Ed., 2020, 59(3), 1295—1301 |
25 | Wu X., Zhang H., Dong J., Qiu M., Kong J., Zhang Y., Li Y., Xu G., Zhang J., Ye J., Nano Energy, 2018, 45, 109—117 |
26 | Qiu S., Shen Y., Wei G., Yao S., Xi W., Shu M., Si R., Zhang M., Zhu J., An C., Appl. Catal. B: Environ., 2019, 259, 118036 |
27 | Fang X., Shang Q., Wang Y., Jiao L., Yao T., Li Y., Zhang Q., Luo Y., Jiang H. L., Adv. Mater., 2018, 30(7), 1705112 |
28 | He T., Chen S., Ni B., Gong Y., Wu Z., Song L., Gu L., Hu W., Wang X., Angew. Chem. Int. Ed., 2018, 57(13), 3493—3498 |
29 | Zuo Q., Liu T., Chen C., Ji Y., Gong X., Mai Y., Zhou Y., Angew. Chem. Int. Ed., 2019, 58(30), 10198—10203 |
30 | Yang C., Zhao Z., Liu Q., Appl. Surf. Sci., 2022, 577, 151916 |
31 | Dong S., Liu W., Liu S., Li F., Hou J., Hao R., Bai X., Zhao H., Liu J., Guo L., Mater. Today Nano, 2022, 17, 100157 |
32 | Zhang C., Qin D., Zhou Y., Qin F., Wang H., Wang W., Yang Y., Zeng G., Appl. Catal. B: Environ., 2022, 303, 120904 |
33 | Zeng Z., Su Y., Quan X., Choi W., Zhang G., Liu N., Kim B., Chen S., Yu H., Zhang S., Nano Energy, 2020, 69, 104409 |
34 | Cha G., Hwang I., Hejazi S., Dobrota A. S., Pasti I. A., Osuagwu B., Kim H., Will J., Yokosawa T., Badura Z., Kment S., Mohajernia S., Mazare A., Skorodumova N. V., Spiecker E., Schmuki P., iScience, 2021, 24(8), 102938 |
35 | Yang C., Cheng Z., Divitini G., Qian C., Hou B., Liao Y., J. Mater. Chem. A, 2021, 9(35), 19894—19900 |
36 | Li Y., Li B., Zhang D., Cheng L., Xiang Q., ACS Nano, 2020, 14(8), 10552—10561 |
37 | Gao C., Chen S., Wang Y., Wang J., Zheng X., Zhu J., Song L., Zhang W., Xiong Y., Adv. Mater., 2018, 30(13), 1704624 |
38 | Kou M., Liu W., Wang Y., Huang J., Chen Y., Zhou Y., Chen Y., Ma M., Lei K., Xie H., Wong P. K., Ye L., Appl. Catal. B: Environ., 2021, 291, 120146 |
39 | Yang Y., Zeng G., Huang D., Zhang C., He D., Zhou C., Wang W., Xiong W., Song B., Yi H., Ye S., Ren X., Small, 2020, 16(29), 2001634 |
40 | Liu J., Zou Y., Cruz D., Savateev A., Antonietti M., Vile G., ACS Appl. Mater. Inter., 2021, 13(22), 25858—25867 |
41 | Xu T., Zheng H., Zhang P., J. Hazard Mater., 2020, 388, 121746 |
42 | Zhang T., Zhang D., Han X., Dong T., Guo X., Song C., Si R., Liu W., Liu Y., Zhao Z., J. Am. Chem. Soc., 2018, 140(49), 16936—16940 |
43 | Wang L., Tang R., Kheradmand A., Jiang Y., Wang H., Yang W., Chen Z., Zhong X., Ringer S. P., Liao X., Liang W., Huang J., Appl. Catal. B: Environ., 2021, 284, 119759 |
44 | Zhou P., Chao Y., Lv F., Wang K., Zhang W., Zhou J., Chen H., Wang L., Li Y., Zhang Q., Gu L., Guo S., ACS Catal., 2020, 10(16), 9109—9114 |
45 | Shen S., Chen J., Wang Y., Dong C. L., Meng F., Zhang Q., Huangfu Y., Lin Z., Huang Y. C., Li Y., Li M., Gu L., Sci. Bull., 2022, 67(5), 520—528 |
46 | Ji S., Qu Y., Wang T., Chen Y., Wang G., Li X., Dong J., Chen Q., Zhang W., Zhang Z., Liang S., Yu R., Wang Y., Wang D., Li Y., Angew. Chem. Int. Ed., 2020, 59(26), 10651—10657 |
47 | Guan X. J., Mao S. S., Shen S. H., ChemNanoMat, 2021, 7(8), 873—880 |
48 | Sui J. F., Liu H., Hu S. J., Sun K., Wan G., Zhou H., Zheng X., Jiang H. L., Adv. Mater., 2022, 34(6), 2109203 |
49 | Li X., Bi W., Zhang L., Tao S., Chu W., Zhang Q., Luo Y., Wu C., Xie Y., Adv. Mater., 2016, 28(12), 2427—2431 |
50 | Dong P., Wang Y., Zhang A., Cheng T., Xi X., Zhang J., ACS Catal., 2021, 11(21), 13266—13279 |
51 | Liu Y., Xu X., Zheng S., Lv S., Li H., Si Z., Wu X., Ran R., Weng D., Kang F., Carbon, 2021, 183, 763—773 |
52 | Shi X., Mao L., Dai C., Yang P., Zhang J., Dong F., Zheng L., Fujitsuka M., Zheng H., J. Mater. Chem. A, 2020, 8(26), 13376—13384 |
53 | Ma X., Liu H., Yang W., Mao G., Zheng L., Jiang H. L., J. Am. Chem. Soc., 2021, 143(31), 12220—12229 |
54 | Cao S., Li H., Tong T., Chen H. C., Yu A., Yu J., Chen H. M., Adv. Funct. Mater., 2018, 28(32), 1802169 |
55 | Cao Y., Chen S., Luo Q., Yan H., Lin Y., Liu W., Cao L., Lu J., Yang J., Yao T., Wei S., Angew. Chem. Int. Ed., 2017, 56(40), 12191—12196 |
56 | Jin X., Wang R., Zhang L., Si R., Shen M., Wang M., Tian J., Shi J., Angew. Chem. Int. Ed., 2020, 59(17), 6827—6831 |
57 | Li Y., Wang Y., Dong C. L., Huang Y. C., Chen J., Zhang Z., Meng F., Zhang Q., Huangfu Y., Zhao D., Gu L., Shen S., Chem. Sci., 2021, 12(10), 3633—3643 |
58 | Liu W., Cao L., Cheng W., Cao Y., Liu X., Zhang W., Mou X., Jin L., Zheng X., Che W., Liu Q., Yao T., Wei S., Angew. Chem. Int. Ed., 2017, 56(32), 9312—9317 |
59 | Liu L., Corma A., Trends Chem., 2020, 2(4), 383—400 |
60 | Dessal C., Len T., Morfin F., Rousset J. L., Aouine M., Afanasiev P., Piccolo L., ACS Catal., 2019, 9(6), 5752—5759 |
61 | Liu L., Zakharov D. N., Arenal R., Concepcion P., Stach E. A., Corma A., Nat. Commun., 2018, 9(1), 574 |
62 | Fernandez E., Liu L., Boronat M., Arenal R., Concepcion P., Corma A., ACS Catal., 2019, 9(12), 11530—11541 |
63 | Wang J., Tan H., Yu S., Zhou K., ACS Catal., 2015, 5(5), 2873—2881 |
64 | Liu L., Meira D. M., Arenal R., Concepcion P., Puga A. V., Corma A., ACS Catal., 2019, 9(12), 10626—10639 |
65 | Wang B., Cai H., Shen S., Small Methods, 2019, 3(9), 1800447 |
66 | Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120(21), 11900—11955 |
67 | Qin S., Denisov N., Will J., Kolařík J., Spiecker E., Schmuki P., Solar RRL, 2022, 2101026 |
68 | Dong Z., Zhang L., Gong J., Zhao Q., Chem. Eng. J., 2021, 403, 126383 |
69 | Rong P., Jiang Y. F., Wang Q., Gu M., Jiang X. L., Yu Q., J. Mater. Chem. A, 2022, 10(11), 6231—6241 |
70 | Ong W. J., Tan L. L., Ng Y. H., Yong S. T., Chai S. P., Chem. Rev., 2016, 116(12), 7159—7329 |
71 | Khan M. S., Zhang F., Osada M., Mao S. S., Shen S., Solar RRL, 2019, 4(8), 1900435 |
72 | Ding Y., Lin Z., Deng J., Liu Y., Zhang L., Wang K., Xu S., Cao S., Int. J. Hydrogen Energy, 2022, 47(3), 1568—1578 |
73 | Zhang X., Yuan X., Jiang L., Zhang J., Yu H., Wang H., Zeng G., Chem. Eng. J., 2020, 390, 124475 |
74 | He F., Wang Z., Li Y., Peng S., Liu B., Appl. Catal. B: Environ., 2020, 269, 118828 |
75 | Yang L., Peng Y., Luo X., Dan Y., Ye J., Zhou Y., Zou Z., Chem. Soc. Rev., 2021, 50(3), 2147—2172 |
76 | Zhao D., Dong C. L., Wang B., Chen C., Huang Y. C., Diao Z., Li S., Guo L., Shen S., Adv. Mater., 2019, 31(43), 1903545 |
77 | Wang B., Cai H., Zhao D., Song M., Guo P., Shen S., Li D., Yang S., Appl. Catal. B: Environ., 2019, 244, 486—493 |
78 | Wei F., Liu Y., Zhao H., Ren X., Liu J., Hasan T., Chen L., Li Y., Su B. L., Nanoscale, 2018, 10(9), 4515—4522 |
79 | Lin Z., Wang S., Miao Y., Yuan J., Liu Y., Xu S., Cao S., Int. J. Hydrogen Energy, 2020, 45(11), 6341—6351 |
80 | Zhang Y., Wu L., Zhao X., Zhao Y., Tan H., Zhao X., Ma Y., Zhao Z., Song S., Wang Y., Li Y., Adv. Energy Mater., 2018, 8(25), 1801139 |
81 | Zhao C., Ding C., Han C., Yang X., Xu J., Solar RRL, 2020, 5(2), 2000486 |
82 | Zhu Y., Marianov A., Xu H., Lang C., Jiang Y., ACS Appl. Mater. Inter., 2018, 10(11), 9468—9477 |
83 | Jiang Z., Zhang X., Chen H. S., Hu X., Yang P., ChemCatChem, 2019, 11(18), 4558—4567 |
84 | Wang S., Zhao H., Zhao X., Zhang J., Ao Z., Dong P., He F., Wu H., Xu X., Shi L., Zhao C., Wang S., Sun H., Chem. Eng. J., 2020, 381, 122593 |
85 | Chen X., Wang J., Chai Y., Zhang Z., Zhu Y., Adv. Mater., 2021, 33(7), 2007479 |
86 | Zhao D., Wang Y., Dong C. L., Huang Y. C., Chen J., Xue F., Shen S., Guo L., Nat. Energy, 2021, 6(4), 388—397 |
87 | Zhao D., Wang M., Kong T., Shang Y., Du X., Guo L., Shen S., Mater. Today Chem., 2019, 11, 296—302 |
88 | Xiao X., Gao Y., Zhang L., Zhang J., Zhang Q., Li Q., Bao H., Zhou J., Miao S., Chen N., Wang J., Jiang B., Tian C., Fu H., Adv. Mater., 2020, 32(33), 2003082 |
89 | Ma M., Huang Z., Doronkin D. E., Fa W., Rao Z., Zou Y., Wang R., Zhong Y., Cao Y., Zhang R., Zhou Y., Appl. Catal. B: Environ., 2022, 300, 120695 |
90 | Lin J., Chen Y., Zhou Y., Li L., Qiao B., Wang A., Liu J., Wang X., Zhang T., AIChE Journal, 2017, 63(9), 4003—4012 |
91 | Ding K., Gulec A., Johnson A. M., Schweitzer N. M., Stucky G. D., Marks L. D., Stair P. C., Science, 2015, 350(6257), 189—192 |
92 | Nie L., Mei D., Xiong H., Peng B., Ren Z., Hernandez Xavier Isidro P., DeLaRiva A., Wang M., Engelhard Mark H., Kovarik L., Datye Abhaya K., Wang Y., Science, 2017, 358(6369), 1419—1423 |
93 | Sun M., Ji J., Hu M., Weng M., Zhang Y., Yu H., Tang J., Zheng J., Jiang Z., Pan F., Liang C., Lin Z., ACS Catal., 2019, 9(9), 8213—8223 |
94 | Rossell M. D., Caparrós F. J., Angurell I., Muller G., Llorca J., Seco M., Rossell O., Catal. Sci. Technol., 2016, 6(12), 4081—4085 |
95 | Wei H., Liu X., Wang A., Zhang L., Qiao B., Yang X., Huang Y., Miao S., Liu J., Zhang T., Nat. Commun., 2014, 5, 5634 |
96 | Liu Y., Yang W., Chen Q., Cullen D. A., Xie Z., Lian T., J. Am. Chem. Soc., 2022, 144, 2705—2715 |
97 | Gao S., Yang H., Rao D., Wang N., Li Y., Li J., Rao S., Maouche C., Wu Z., Li B., Zhou Y., Yang J., Chem. Eng. J., 2022, 433, 134460 |
98 | Qiao Y., Yuan P., Hu Y., Zhang J., Mu S., Zhou J., Li H., Xia H., He J., Xu Q., Adv. Mater., 2018, 30(46), 1804504 |
99 | Yu Q., Lian S., Li J., Yu R., Xi S., Wu J., Zhao D., Mai L., Zhou L., J. Mater. Chem. A, 2020, 8(12), 6076—6082 |
100 | Wang Z., Zhu C., Tan H., Liu J., Xu L., Zhang Y., Liu Y., Zou X., Liu Z., Lu X., Adv. Funct. Mater., 2021, 31(45), 2104735 |
101 | An S., Zhang G., Wang T., Zhang W., Li K., Song C., Miller J. T., Miao S., Wang J., Guo X., ACS Nano, 2018, 12(9), 9441—9450 |
102 | Liu M., Lee J., Yang T. C., Zheng F., Zhao J., Yang C. M., Lee L. Y. S., Small Methods, 2021, 5(5), 2001165 |
103 | Lei Y., Yang F., Xie H., Lei Y., Liu X., Si Y., Wang H., J. Mater. Chem. A, 2020, 8(39), 20629—20636 |
104 | Ao X., Zhang W., Li Z., Li J. G., Soule L., Huang X., Chiang W. H., Chen H. M., Wang C., Liu M., Zeng X. C., ACS Nano, 2019, 13(10), 11853—11862 |
105 | Nie Z., Zhang L., Ding X., Cong M., Xu F., Ma L., Guo M., Li M., Zhang L., Adv. Mater., 2022, 34, 2108180 |
106 | Yan B.,He Y., Yang G., J. Mater. Chem. A, 2022, 10, 1899—1908 |
107 | Yu Y., Dong X., Chen P., Geng Q., Wang H., Li J., Zhou Y., Dong F., ACS Nano, 2021, 15(9), 14453—14464 |
108 | Wang T., Tao X., Li X., Zhang K., Liu S., Li B., Small, 2021, 17(2), 2006255 |
109 | Ren X., Li C., Liu J., Li H., Bing L., Bai S., Xue G., Shen Y., Yang Q., ACS Appl. Mater. Inter., 2022, 14(5), 6885—6893 |
110 | Lu X., Tong A., Luo D., Jiang F., Wei J., Huang Y., Jiang Z., Lu Z., Ni Y., J. Mater. Chem. A, 2022, 10(9), 4594—4600 |
111 | Zhang J., Liu C., Zhang B., Small Methods, 2019, 3(9), 1800481 |
112 | Liu Q., Zhang Z., Catal. Sci. Technol., 2019, 9(18), 4821—4834 |
113 | Qiao S., He Q., Zhang P., Zhou Y., Chen S., Song L., Wei S., J. Mater. Chem. A, 2022, 10, 5771—5791 |
114 | Fang L., Seifert S., Winans R. E., Li T., Small Methods, 2021, 5(5), 2001194 |
115 | Xu B., Fu X., You X., Zhao E., Li F., Chen Z., Li Y., Wang X., Yao Y., ACS Catal., 2022, 12, 6958—6967 |
116 | Caudillo F. U., Muñoz B. M. J., Kubacka A., Fernández⁃García M., ChemPhotoChem, 2018, 2(9), 777—785 |
117 | Braun A., Sivula K., Bora D. K., Zhu J., Zhang L., Grätzel M., Guo J., Constable E. C., J. Phys. Chem. C, 2012, 116(32), 16870—16875 |
118 | Ismail A. S. M., Garcia⁃Torregrosa I., Vollenbroek J. C., Folkertsma L., Bomer J. G., Haarman T., Ghiasi M., Schellhorn M., Nachtegaal M., Odijk M., van den Berg A., Weckhuysen B. M., de Groot F. M. F., ACS Catal., 2021, 11(19), 12324—12335 |
119 | Dong C. L., Vayssieres L., Chem. Eur. J., 2018, 24(69), 18356—18373 |
120 | Piccolo L., Afanasiev P., Morfin F., Len T., Dessal C., Rousset J. L., Aouine M., Bourgain F., Aguilar⁃Tapia A., Proux O., Chen Y., Soler L., Llorca J., ACS Catal., 2020, 10, 12696—12705 |
121 | Piccolo L., Catal. Today, 2021, 373, 80—97 |
122 | Lin Z., Wang Y., Peng Z., Huang Y. C., Meng F., Chen J. L., Dong C. L., Zhang Q., Wang R., Zhao D., Chen J., Gu L., Shen S., Adv. Energy Mater., 2022, 12(26), 2200716 |
123 | Li Z., Zhang L., Liu Y., Shao C., Gao Y., Fan F., Wang J., Li J., Yan J., Li R., Li C., Angew. Chem. Int. Ed., 2020, 59(2), 935—942 |
124 | Cao B., Li G., Li H., Appl. Catal. B: Environ., 2016, 194, 42—49 |
125 | Tayyab M., Liu Y., Min S., Muhammad Irfan R., Zhu Q., Zhou L., Lei J., Zhang J., Chinese J. Catal., 2022, 43(4), 1165—1175 |
126 | Jia Q., Zhang S., Jia X., Dong X., Gao Z., Gu Q., Catal. Sci. Technol., 2019, 9(18), 5077—5089 |
127 | Chakraborty J., Nath I., Verpoort F., Chem. Eng. J., 2019, 358, 580—588 |
128 | Hiragond C. B., Powar N. S., Lee J., In S. I., Small, 2022, 18(29), 2201428 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[4] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[5] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[6] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[7] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[8] | YANG Dan, LIU Xu, DAI Yihu, ZHU Yan, YANG Yanhui. Research Progress in Electrocatalytic CO2 Reduction Reaction over Gold Clusters [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220198. |
[9] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[10] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[11] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[12] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[13] | WANG Junyang, LIU Zheng, ZHANG Qian, SUN Chunyan, LI Hongxia. Application of DNA Silver Nanoclusters in the Fluorescence Biosensors based on Functional Nucleic Acids [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220010. |
[14] | ZHUANG Jiahao, WANG Dingsheng. Current Advances and Future Challenges of Single-atom Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220043. |
[15] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||