Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (6): 20220050.doi: 10.7503/cjcu20220050
• Physical Chemistry • Previous Articles Next Articles
WANG Guangqi1, BI Yiyang2, WANG Jiabo2, SHI Hongfei2, LIU Qun2(), ZHANG Yu2()
Received:
2022-01-21
Online:
2022-06-10
Published:
2022-04-10
Contact:
LIU Qun,ZHANG Yu
E-mail:QunLiu@jlict.edu.cn;zhang99yu@jlict.edu.cn
Supported by:
CLC Number:
TrendMD:
WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production[J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050.
Sample | Eg/eV | ECB/eV | EVB/eV |
---|---|---|---|
CdS NPs | 2.40 | -0.60 | 1.80 |
Ni(PO3)2?Ni2P?1 | 2.06 | -0.54 | 1.52 |
8%Ni(PO3)2?Ni2P?1/CdS NPs | 1.86 | -0.57 | 1.29 |
Table 1 Band gap(Eg), conduction band(ECB) and valence band(EVB) of CdS NPs, Ni(PO3)2?Ni2P?1 and 8%Ni(PO3)2-Ni2P-1/CdS NPs
Sample | Eg/eV | ECB/eV | EVB/eV |
---|---|---|---|
CdS NPs | 2.40 | -0.60 | 1.80 |
Ni(PO3)2?Ni2P?1 | 2.06 | -0.54 | 1.52 |
8%Ni(PO3)2?Ni2P?1/CdS NPs | 1.86 | -0.57 | 1.29 |
1 | Zhang Y. Z., Zhou W., Tang Y., Guo Y. C., Geng Z. K., Liu L. Q., Tan X., Wang H. Y., Yu T., Ye J. H., Appl. Catal. B, 2022, 305, 121055 |
2 | Li Y. X., Zhang W. Z., Li H., Yang T. Y., Peng S. Q., Kao C., Zhang W. Y., Chem. Eng. J., 2020, 394, 124928 |
3 | Chang J. F., Lv Q., Li G. Q., Ge J. J., Liu C. P., Wei X., Appl. Catal. B, 2017, 204, 486—496 |
4 | Liu Y. Y., Li B. J., Xiang Z. H., Small, 2021, 17(34), 2007576 |
5 | Fan H. T., Wu Z., Liu K. C., Liu W. S., Chem. Eng. J., 2022, 433, 134474 |
6 | Liu H. W., Chen J., Guo W. Y., Xu Q. J., Min Y. L., J. Colloid Interface Sci., 2022, 613, 652—660 |
7 | Nuray G., Appl. Surf. Sci., 2020, 522, 146442 |
8 | Wang Y. Q., Xu X. X., Lu W., Huo Y. Q., Bian L., Dalton Trans., 2018, 47(12), 4219—4227 |
9 | Liu Q. Y., Qi Y. L., Zheng Y. F., Song X. C., B. Mater. Sci., 2017, 40(7), 1329—1333 |
10 | Tonda S., Kumar S., Gawli Y., Bhardwaj M., Ogale S., Int. J. Hydrog. Energy, 2017, 42(9), 5971—5984 |
11 | Jo W. K., Selvam N. C. S., Chem. Eng. J., 2017, 317, 913—924 |
12 | Liu C., Xiong M. H., Chai B., Yan J. T., Fan G. Z., Song G. S., Catal. Sci. Technol., 2019, 9(24), 6929—6937 |
13 | Jian Q., Hao X. Q., Jin Z. L., Ma Q. X., Phys. Chem. Chem. Phys., 2020, 22(4), 1932—1943 |
14 | Qiao S. S., Feng C., Guo Y., Chen T. X., Akram N., Zhang Y., Wan W., Yue F., Wang J. D., Chem. Eng. J., 2020, 395, 125068 |
15 | Xin X., Song Y., R. Guo S. H., Zhang Y. Z., Wang B. L., Wang Y. J., Li X. H., J. Alloys Compd., 2020, 829, 154635 |
16 | Reddy D. A., Park H., Ma R., Kumar D. P., Lim M., Kim T. K., ChemSusChem, 2017, 10(7), 1563—7150 |
17 | Han B., Liu S., Zhang N., Xu Y. J., Tang Z. R., Appl. Catal. B, 2017, 202, 298—304 |
18 | Xie Y. P., Yu Z. B., Liu G., Ma X. L., Cheng H. M., Energ. Environ. Sci., 2014, 7(6), 1895—1961 |
19 | Cao W. Y., Zhang X. L., Zheng Y. J., Wang K., Dai H. T., Int. J. Hydrog. Energy, 2017, 42(5), 2924—2930 |
20 | Li Y. K., Zhang P., Wan D. Y., Xue C., Zhao J. T., Shao G. S., Appl. Surf. Sci., 2020, 504, 144361 |
21 | Meng X. J., Kuang W. D., Qi W. L., Cheng Z. X., Thomas T. J., Liu S. Q., Yang C., Yang M. H., ChemCatChem, 2020, 12(10), 2752—2759 |
22 | Huo J. P., Lei Y., Zeng G., Zeng H., J. Mater. Chem. A, 2014, 2(29), 11040—11044 |
23 | Wei L., Adamson M. A. S., Vela J., ChemNanoMat, 2020, 6(8), 1179—1185 |
24 | Bown J. J., Page A. J., J. Mater. Chem. A, 2019, 7(21), 13029—13035 |
25 | Gao N., Zhou Y. K., Shen S. B., Chem. Ind. Eng. Prog., 2019, 38(12), 5372—5379 |
高宁, 周玉康, 沈树宝. 化工进展, 2019, 38(12), 5372—5379 | |
26 | Osterloh F. E., Chem. Mater., 2007, 20(1), 35—54 |
27 | Gultom N. S., Abdullah H., Kuo D. H., Appl. Catal. B, 2020, 272, 118985 |
28 | Xu Z. H., Zhu Q. H., Xi X. G., Xing M. Y., Zhang J. L., Front. Energy, 2021, 15(3), 678—686 |
29 | Jiao Y. Y., Li Y. K., Wang J. S., He Z. H., Li Z. J., Appl. Surf. Sci., 2020, 534, 147603 |
30 | Yang H., Yang C., Zhang N. N., Mo K. L., Li Q., Lv K. L., Fan J. J., Wen L. L., Appl. Catal. B, 2021, 285, 119801 |
31 | Fang Y. Z., Liu R. Z., Dou S. X., Shang Q. Q., Wang D. T., Kong X. J., Liu J. H., Int. J. Hydrog. Energy, 2022, 47(12), 7724—7737 |
32 | Luo M. H., Yao W. F., Huang C. P., Wu Q., Xu Q. J., J. Mater. Chem. A, 2015, 3(26), 13884—13891 |
33 | Dong Q. W., Li M. L., Sun M. S., Si F. Y., Gao Q. Z., Cai X., Xu Y. H., Yuan T., Zhang S. S., Peng F., Fang Y. P., Yang S. Y., Small Methods, 2021, 5(11), 2100878 |
34 | Shen R. C., Xie J., Xiang Q. J., Chen X. B., Jiang J. Z., Li X., Chinese J. Catal., 2019, 40(3), 240—288 |
沈荣晨, 谢君, 向全军, 陈小波, 江吉周, 李鑫. 催化学报, 2019, 40(3), 240—288 | |
35 | Yu Y. H., Chen Q. R., Li J., Rao P., Li R. S., Du Y. L., Jia C. M., Huang W., Luo J. M., Deng P. L., Shen Y. J., Tian X. L., J. Colloid Interface Sci., 2022, 607, 1091—1102 |
36 | Wu T. F., Wang P. F., Qian J., Ao Y. H., Wang C., Hou J., Fan G. Z., Song G. S., Dalton Trans., 2017, 46(40), 13793—13801 |
37 | Zhang C., Chu S. P., Liu B. Q., Liu Y., Guo Z. M., Lv Z. G., Appl. Surf. Sci., 2021, 569, 150987 |
38 | Li K., Ma J. W., Guan X. L., He H. W., Wang M., Zhang G. L., Zhang F. B., Fan X. B., Peng W. C., Li Y., Nanoscale, 2018, 10(47), 22173—22179 |
39 | Tong J. H., Li W. Y., Bo L. L., Li Y. L., Li T., Zhang Q., Electrochim. Acta, 2019, 320, 134579 |
40 | Ray A., Sultana S., Paramanik L., Parida K. M., J. Mater. Chem. A, 2020, 8(37), 19196—19245 |
41 | Samal A., Swain S., Manju U., Das D. P., ACS Sustain. Chem. Eng., 2019, 7(11), 10052—10063 |
42 | Jiang H., Zhao T. Y., Yang Z. K., Xing Z. P., Li Z. Z., Zou J. L., Pan K., Zhou W., J. Taiwan Inst. Chem. Eng., 2019, 104, 160—167 |
43 | Gurbani N., Choudhary R. J., Phase D. M., Marumoto K., Liu R. S., Chouhan N., Chem. Eng. J. Adv., 2021, 6, 100105 |
44 | Wang Y., Pan Q., Jia K., Wang H. B., Gao J. J., Xu C. L., Zhong Y. J., Alshehri A. A., Alzahrani K. A., Guo X. D., Sun X. P., Inorg. Chem., 2019, 58(10), 6579—6583 |
45 | Li Y. W., Xu W. Q., Xie Z. P., Zhang L. Z., Yao J. H., Ionics, 2017, 23(7), 1625—1636 |
46 | Liu Z. L., Li B. Q., Feng Y. J., Jia D. C., Li C. C., Sun Q. F., Zhou Y., Appl. Surf. Sci., 2022, 571, 151384 |
47 | Norouzi P., Karimpour A., Ganjali M. R., J. Mater. Sci.: Mater. Electron., 2019, 30(17), 16184—16194 |
48 | Sheng Q., Li X., Prins R., Angew. Chem. Int. Ed., 2021, 60(20), 11180—11183 |
49 | Irfan R. M., Tahir M. H., Khan S. A., J. Colloid Interface Sci., 2019, 557, 1—9 |
50 | Yan C. Y., Li W. Q., Liu X. J., Chen M., Liu X., Li X. M., Zai J. T., Qian X. F., ACS Appl. Mater. Interfaces, 2021, 13, 48872—48880 |
51 | He K., Tsega T. T., Liu X., Zai J.T., Li X. H., Liu X. J., Li W. H., Ali N., Qian X. F., Angew. Chem. Int. Ed., 2019, 58(34), 11903—11909 |
52 | Yang X., Lu A. Y., Zhu Y., Nano Energy, 2015, 15, 634—341 |
53 | Sun Z., Zheng H., Li J., Energ. Environ. Sci., 2015, 8(9), 2668—2676 |
54 | Ran J., Zhang J., Yu J., Chem. Soc. Rev., 2014, 43(22), 7787—7812 |
55 | Pan Y. X., Peng J. B., Xin S., ACS Sustain. Chem. Eng., 2017, 5(6), 5449—5456 |
56 | Li X., Yu J., Low J., J. Mater. Chem. A, 2015, 3(6), 2485—2534 |
57 | Xiang Q., Cheng F., Lang D., ChemSusChem, 2016, 9(9), 996—1002 |
58 | Li Y., Wang L., Cai T., Chem. Eng. J., 2017, 321, 366—374 |
59 | Gong H. S., Li Z., Chen Z. H., Liu Q. W., Song M. X., Huang C. J., ACS Appl. Nano Mater., 2020, 3(4), 3665—3674 |
60 | Yuan J. L., Wen J. Q., Zhong Y. M., Li X., Fang Y. P., Zhang S. S., Liu W., J. Mater. Chem. A, 2015, 3(35), 18244—18255 |
61 | Cheng X. D., Pan Z. Y., Lei C. J., Jin Y. J., Yang B., Li Z. J., Zhang X. W., Lei L. C., Yuan C., Hou Y., J. Mater. Chem. A, 2019, 7(3), 965—971 |
[1] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[2] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[3] | FAN Jianling, TANG Hao, QIN Fengjuan, XU Wenjing, GU Hongfei, PEI Jiajing, CEHN Wenxing. Nitrogen Doped Ultra-thin Carbon Nanosheet Composited Platinum-ruthenium Single Atom Alloy Catalyst for Promoting Electrochemical Hydrogen Evolution Process [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220366. |
[4] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[5] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[6] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[7] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[8] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[9] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[10] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[11] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[12] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[13] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[14] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
[15] | WANG Zumin, MENG Cheng, YU Ranbo. Doping Regulation in Transition Metal Phosphides for Hydrogen Evolution Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||