Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (5): 1331.doi: 10.7503/cjcu20210003
• Review • Previous Articles Next Articles
GENG Chuannan1, HUA Wuxing1, LING Guowei2, TAO Ying1, ZHANG Chen2(), YANG Quanhong1(
)
Received:
2021-01-04
Online:
2021-05-10
Published:
2021-05-08
Contact:
ZHANG Chen,YANG Quanhong
E-mail:zhangc@tju.edu.cn;qhyangcn@tju.edu.cn
Supported by:
CLC Number:
TrendMD:
GENG Chuannan, HUA Wuxing, LING Guowei, TAO Ying, ZHANG Chen, YANG Quanhong. Catalysis in Li-sulfur Battery: Materials and Characterization[J]. Chem. J. Chinese Universities, 2021, 42(5): 1331.
1 | Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J. M., Nat. Mater., 2012, 11(1), 19—29 |
2 | Evers S., Nazar L. F., Acc. Chem. Res., 2013,46(5), 1135—1143 |
3 | Yin Y. X., Xin S., Guo Y. G., Wan L. J., Angew. Chem. Int. Ed., 2013, 52(50), 13186—13200 |
4 | Lim J., Pyun J., Char K., Angew. Chem. Int. Ed., 2015, 54(11), 3249—3258 |
5 | Fang R., Zhao S., Sun Z., Wang D. W., Cheng H. M., Li F., Adv. Mater., 2017, 29(48), 1606823 |
6 | Johansson P., Nat. Energy, 2017, 2(6), 1—2 |
7 | Huang J. Q., Zhang Q., Wei F., Energy Storage Mater., 2015, 1, 127—145 |
8 | Tao X., Wang J., Liu C., Wang H., Yao H., Zheng G., Zu C., Nat. Commun., 2016, 7, 11203 |
9 | Liu T., Hu H., Ding X., Yuan H., Jin C., Nai J., Liu Y., Wang Y., Wan Y., Tao X., Energy Storage Mater., 2020, 30, 346—366 |
10 | Shi H., Lv W., Zhang C., Wang D. W., Ling G., He Y., Kang F., Yang Q. H., Adv. Funct. Mater., 2018, 28(38), 1800508 |
11 | Zhou G., Zhao Y., Manthiram A., Adv. Energy Mater., 2015, 5(9), 1402263 |
12 | Li Z., Zhang J. T., Chen Y. M., Li J., Lou X. W., Nat. Commun., 2015, 6, 8850 |
13 | Lv D., Zheng J., Li Q., Xie X., Ferrara S., Nie Z., Mehdi L. B., Browning N. D., Zhang J., Graff G. L., Liu J., Xiao J., Adv. Energy Mater., 2015, 5, 1402290 |
14 | Ji X., Lee K. T., Nazar L. F., Nat. Mater., 2009, 8(6), 500—506 |
15 | Xin S., Gu L., Zhao N. H., Yin Y. X., Zhou L. J., Guo Y. G., Wan, L., J. Am. Chem. Soc., 2012, 134(45), 1 8510—18513 |
16 | Ai W., Zhou W., Du Z., Chen Y., Sun Z., Wu C., Zou C., Li C., Huang W., Yu T., Energy Storage Mater., 2017, 6, 112 |
17 | Yuan S., Bao J. L., Wang L., Xia Y., Truhlar D. G., Wang Y., Adv. Energy Mater., 2016, 6, 1501733 |
18 | Zheng J., Tian J., Wu D., Gu M., Xu W., Wang C., Gao F., Engelhard M. H., Zhang J. G., Liu J., Xiao J., Nano Lett., 2014, 14(5), 2345—2352 |
19 | Ye J. C., Chen J. J., Yuan R. M., Deng D. R., Zheng M. S., Cronin L., Dong Q. F., J. Am. Chem. Soc., 2018, 140(8), 3134—3138 |
20 | Yin P., Yao T., Wu Y., Zheng L., Lin Y., Liu W., Ju H., Zhu J., Hong X., Deng Z., Zhou G., Wei S., Li Y., Angew. Chem. Int. Ed., 2016, 55(36), 10800 |
21 | Zhou W., Yu Y., Chen H., DiSalvo F. J., Abruña H. D., J. Am. Chem. Soc., 2013, 135(44), 16736—16743 |
22 | Liu D., Zhang C., Zhou G., Lv W., Ling G., Zhi L., Yang Q. H., Adv. Sci., 2018, 5(1), 1700270 |
23 | Zhao M., Peng H. J., Li B. Q., Chen X., Xie J., Liu X., Zhang Q., Huang J. Q., Angew. Chem., Int. Ed., 2020, 132(23), 9096—9102 |
24 | Zhao M., Li B. Q., Chen X., Xie J., Yuan H., Huang J. Q., Chem., 2020, 6(12), 3297—3311 |
25 | Zhao M., Peng H. J., Zhang Z. W., Li B. Q., Chen X., Xie J., Chen X., Wei J. Y., Zhang Q., Huang J. Q., Angew. Chem. Int. Ed., 2019, 58(12), 3779—3783 |
26 | Faber M. S., Park K., Cabán-Acevedo M., Santra P. K., Jin S., J. Phys. Chem. Lett., 2013, 4(11), 1843—1849 |
27 | Ma Z., Li Z., Hu K., Liu D., Huo J., Wang S., J. Power Sources, 2016, 325(1), 71—78 |
28 | Faber M. S., Dziedzic R., Lukowski M. A., Kaiser N. S., Ding Q., Jin S., J. Am. Chem. Soc., 2014, 136(28), 10053—10061 |
29 | Yuan Z., Peng H. J., Hou T. Z., Huang J. Q., Chen C. M., Wang D. W., Cheng X. B., Wei F., Zhang Q., Nano Lett., 2016, 16(1), 519—527 |
30 | Zhou G., Tian H., Jin Y., Tao X., Liu B., Zhang R., Seh W. Z., Zhuo D., Liu Y., Sun J., Zhao J., Zu C., Wu D. S., Zhang Q., Cui Y., Proc. Natl. Acad. Sci. USA, 2017, 114(5), 840—845 |
31 | Mosavati N., Salley S. O., Ng K. Y. S., J. Power Sources, 2017, 340(1), 210—216 |
32 | Jeong T. G., Choi D. S., Song H., Choi J., Park S. A., Oh S. H., Kim H., Jung Y., Kim Y. T., ACS Energy Lett., 2017, 2(2), 327—333 |
33 | Zhang L., Chen X., Wan F., Niu Z., Wang Y., Zhang Q., Chen J., ACS Nano, 2018, 12(9), 9578—9586 |
34 | Ye Z., Jiang Y., Qian J., Li W., Feng T., Li L., Wu F., Chen R., Nano Energy, 2019, 64, 103965 |
35 | Mi Y., Liu W., Li X., Zhuang J., Zhou H., Wang H., Nano Res., 2017, 10(11), 3698—3705 |
36 | Huang S., Von Lim Y., Zhang X., Wang Y., Zheng Y., Kong D., Ding M., Yang S. A., Yang H. Y., Nano Energy, 2018, 51, 340—348 |
37 | Zhou J., Liu X., Zhu L., Zhou J., Guan Y., Chen L., Niu S., Cai J., Sun D., Zhu Y., Du J., Wang G., Qian Y., Joule, 2018, 2(12), 2681—2693 |
38 | Zhou T., Lv W., Li J., Zhou G., Zhao Y., Fan S., Liu B., Li B., Kang F., Yang Q. H., Energy Environ. Sci., 2017, 10(7), 1694—1703 |
39 | Jiao L., Zhang C., Geng C., Wu S., Li H., Lv W., Tao Y., Chen Z., Zhou G., Li J., Ling G., Wan Y., Yang Q. H., Adv. Energy Mater., 2019, 9(19), 1900219 |
40 | Song Y., Zhao W., Kong L., Zhang L., Zhu X., Shao Y., Ding F., Zhang Q., Sun J., Liu Z., Energy Environ. Sci., 2018, 11(9), 2620—2630 |
41 | Ye C., Jiao Y., Jin H., Slattery A. D., Davey K., Wang H., Qiao S. Z., Angew. Chem.Int. Ed., 2018, 57(51), 16703—16707 |
42 | Zhang B., Luo C., Deng Y., Huang Z., Zhou G., Lv W., He Y. B., Wan Y., Kang F., Yang Q. H., Adv. Energy Mater., 2020, 10(15), 2000091 |
43 | Wang R., Luo C., Wang T., Zhou G., Deng Y., He Y., Zhang Q., Kang F., Lv W., Yang Q. H., Adv. Mater., 2020, 32(32), 2000315 |
44 | Wei N., Cai J., Wang R., Wang M., Lv W., Ci H., Sun J., Liu Z., Nano Energy, 2019, 66, 104190 |
45 | Zhao M., Li B. Q., Peng H. J., Yuan H., Wei J. Y., Huang J. Q., Angew. Chem. Int. Ed., 2020, 59(31), 12636—12652 |
46 | Xie J., Li B. Q., Peng H. J., Song Y. W., Zhao M., Chen X., Zhang Q., Huang J. Q., Adv. Mater., 2019, 31(43),1903813 |
47 | Li B. Q., Kong L., Zhao C. X., Jin Q., Chen X., Peng H. J., Qin J. L., Chen J. X., Yuan H., Zhang Q., Huang J. Q., InfoMat, 2019, 1(4), 533—541 |
48 | Zhang C., Niu S., Lv W., Zhou G., Li J., Fan S., Deng Y., Pan Z., Kang F., Yang Q. H., Nano Energy, 2017, 33, 306—312 |
49 | Tao Y., Wei Y., Liu Y., Wang J., Qiao W., Ling L., Long D., Energy Environ. Sci., 2016, 9(10), 3230—3239 |
50 | Luo D., Zhang Z., Li G., Cheng S., Li S., Li J., Gao R., Li M., Sy S., Deng Y. P., Jiang Y., Zhu Y., Dou H., Hu Y., Yu A., Chen Z., ACS Nano, 2020, 14(4), 4849—4860 |
51 | Liu Y., Chen M., Su Z., Gao Y., Zhang Y., Long D., Carbon, 2021, 172, 260—271 |
52 | Wang S., Liao J., Yang X., Liang J., Sun Q., Liang J., Zhao F., Koo A., Kong F., Yao Y., Gao X., Wu X., Yang S. Z., Li R., Sun X., Nano Energy, 2019, 57, 230—240 |
53 | Huang X., Shi K., Yang J., Mao G., Chen J., J. Power Sources, 2017, 356, 72—79 |
54 | Cao K., Liu H., Li Y., Wang Y., Jiao L., Energy Storage Mater., 2017, 9, 78—84 |
55 | Kong W., Yan L., Luo Y., Wang D., Jiang K., Li Q., Fan S., Wang J., Adv. Funct. Mater., 2017, 27(18), 1606663 |
56 | Sun Z., Zhang J., Yin L., Hu G., Fang R., Cheng H. M., Li F., Nat. Commun., 2017, 8(1), 1—8 |
57 | Yang X. F., Wang A., Qiao B., Li J., Liu J., Zhang T., Acc. Chem. Res., 2013, 46(8), 1740—1748 |
58 | Chen Y., Ji S., Chen C., Peng Q., Wang D., Li Y., Joule, 2018, 2(7), 1242—1264 |
59 | Zhang H., Liu G., Shi L., Ye J., Adv. Energy Mater., 2018, 8(1), 1701343 |
60 | Wang A., Li J., Zhang T., Nature Rev. Chem., 2018, 2(6), 65—81 |
61 | Du Z., Chen X., Hu W., Chuang C., Xie S., Hu A., Yan W., Kong X., Wu X., Ji H., Wan L. J., J. Am. Chem. Soc., 2019, 141(9), 3977—3985 |
62 | Zhou G., Zhao S., Wang T., Yang S. Z., Johannessen B., Chen H., Liu C., Ye Y., Wu Y., Peng Y., Liu C., Jiang S. P., Zhang Q., Cui Y., Nano Lett., 2019, 20(2), 1252—1261 |
63 | Zhao M., Peng H. J., Wei J. Y., Huang J. Q., Li B. Q., Yuan H., Zhang Q., Small Methods, 2019, 1900344 |
64 | Luo C., Liang X., Sun Y., Lv W., Sun Y., Lu Z., Hua W., Yang H., Wang R., Yan C., Li J., Wan Y., Yang Q. H., Energy Storage Mater., 2020, 33, 290—297 |
65 | Zhao E., Nie K., Yu X., Hu Y. S., Wang F., Xiao J., Li H., Huang X., Adv. Funct. Mater., 2018, 28(38), 1707543 |
66 | Gorlin Y., Siebel A., Piana M., Huthwelker T., Jha H., Monsch G., Tromp M., J. Electrochem. Soc., 2015, 162(7), A1146 |
67 | Al Salem H., Babu G., V. Rao C., Arava L. M. R., J. Am. Chem. Soc., 2015, 137(36), 11542—11545 |
68 | Agostini M., Lee D. J., Scrosati B., Sun Y. K., Hassoun J., J. Power Sources, 2014, 265, 14—19 |
69 | Li M., Amirzadeh Z., De Marco R., Tan X. F., Small Methods, 2018, 2(11), 1800133 |
70 | Hagen M., Schiffels P., Hammer M., Dörfler S., Tübke J., Hoffmann M. J., Kaskel S., J. Electrochem. Soc., 2013, 160(8), A1205 |
71 | Zhang L., Qian T., Zhu X., Hu Z., Wang M., Zhang L., Jiang T., Tian J. H., Yan C., Chem. Soc. Rev., 2019, 48(22), 5432— 5453 |
72 | Waluś S., Barchasz C., Colin J. F., Martin J. F., Elkaïm E., Leprêtre J. C., Alloin F., Chem. Commun., 2013, 49(72), 7899— 7901 |
73 | Yan Y., Cheng C., Zhang L., Li Y., Lu J., Adv. Energy Mater., 2019, 9(18), 1900148 |
74 | Tan J., Liu D., Xu X., Mai L., Nanoscale, 2017, 9(48), 19001—19016 |
75 | Cuisinier M., Cabelguen P. E., Evers S., He G., Kolbeck M., Garsuch A., Bolin T., Balasubramanian M., Nazar L. F., J. Phy. Chem. Lett., 2013, 4(19), 3227—3232 |
76 | Xue W., Shi Z., Suo L., Wang C., Wang Z., Wang H., So L. P., Maurano A., Yu D., Chen Y., Qie, L., Zhu Z., Xu G., Kong J., Li J., Nat. Energy, 2019, 4(5), 374—382 |
77 | Lei T., Chen W., Lv W., Huang J., Zhu J., Chu J., Yan C., Wu C., Yan Y., He W., Xiong J., Li Y., Yan C., Goodenough J. B., Duan X., Joule, 2018, 2(10), 2091—2104 |
78 | Xu Z. L., Kim S. J., Chang D., Park K. Y., Dae K. S., Dao K. P., Tuk J. M., Kang K., Energy Environ. Sci., 2019, 12(10), 3144—3155 |
[1] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[2] | ZHOU Leilei, CHENG Haiyang, ZHAO Fengyu. Research Progress of CO2 Hydrogenation over Pd-based Heterogeneous Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220279. |
[3] | ZHANG Shiyu, HE Runhe, LI Yongbing, WEI Shijun, ZHANG Xingxiang. Fabrication of Lithium-sulfur Battery Cathode with Radiation Crosslinked Low Molecular Weight of Polyacrylonitrile and the Mechanism of Sulfur Storage [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210632. |
[4] | CHEN Mingsu, ZHANG Huiru, ZHANG Qi, LIU Jiaqin, WU Yucheng. First-principles Study on the Catalytic Effect of Co,P co-Doped MoS2 in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2021, 42(8): 2540. |
[5] | YANG Tao, YAO Huiying, LI Qing, HAO Wei, CHI Lifeng, ZHU Jia. Density Functional Theoretical Studies on the Promising Electrocatalyst of M-BHT(M=Co or Cu) for CO2 Reduction to CH4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1268. |
[6] | LI Rui, SUN Xiaogang, ZOU Jingyi, HE Qiang. High Performance Lithium-sulfur Battery with Hydroxyapatite Nanowire Composite Interlayer [J]. Chem. J. Chinese Universities, 2020, 41(8): 1866. |
[7] | WU Tong, CONG Lina, SUN Liqun, XIE Haiming. Application of Porous Black Titanium Dioxide with Oxygen Vacancy/Polyethylene as a Composite Separator for Lithium Sulfur Batteries† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1661. |
[8] | HUANG Yapan, SUN Xiaogang, LI Rui, LIANG Guodong, WEI Chengcheng, HU Hao. Suppression of Shuttle Effect of Lithium-sulfur Batteries by Tris(2-carboxyethyl)phosphine Interlayer † [J]. Chem. J. Chinese Universities, 2019, 40(11): 2375. |
[9] | WANG Jie, SUN Xiaogang, CHEN Wei, LI Xu, HUANG Yapan, WEI Chengcheng, HU Hao, LIANG Guodong. Electrochemical Performance of Hydroxylated Multi-walled Carbon Nanotube Sandwich Separator in Lithium-sulfur Battery† [J]. Chem. J. Chinese Universities, 2018, 39(8): 1782. |
[10] | YANG Dongwei, LI Lu, WANG Qin, WANG Xiaochun, LI Qingyuan, SHI Jin. Catalytic Mechanism of Ionic Liquid for CO2 Electrochemical Reduction† [J]. Chem. J. Chinese Universities, 2016, 37(1): 94. |
[11] | LIU Qian, LI Wenhong, QIU Zhaolai, LI Yuan. Michael Addition of Aminothiophenols to α,β-Unsaturated Ketones with High Steric Hindrance Catalyzed by CeCl3·7H2O-NaI† [J]. Chem. J. Chinese Universities, 2014, 35(3): 538. |
[12] | PEI Yi-Xia, LI Hui-Quan, LIU Hai-Tao, ZHANG Yi. FTIR Spectroscopic Studies on Catalytic Mechanism of Lead Compounds in the Reaction of Methylene Dianiline and Dimethyl Carbonate [J]. Chem. J. Chinese Universities, 2012, 33(03): 598. |
[13] | XIONG Shi-Zhao, XIE Kai*, HONG Xiao-Bin. Effect of LiNO3 as Additive on Electrochemical Properties of Lithium\|sulfur Batteries [J]. Chem. J. Chinese Universities, 2011, 32(11): 2645. |
[14] | WANG Rong-Min, YU Tian-Zhi, HE Yu-Feng, WANG Yun-Pu, XIE Bao-Han, XIA Chun-Gu, SUO Ji-Shuan . GC-MS and GC-IR in Studies on Catalytic Oxidation of Cyclohexene in the Presence of Molecular Oxygen [J]. Chem. J. Chinese Universities, 1999, 20(11): 1772. |
[15] | XIE Ying, JIN Qiu, LI Da-Zhen, GAO Pan-Liang, ZI Jun-Qing. The Kinetics Study on Dismutation of Superoxide Catalyzed by Cu(Ser)2and Cu(Gly-Gly)2by Using Stopped-flow Method [J]. Chem. J. Chinese Universities, 1998, 19(8): 1288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||