Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (5): 20220143.doi: 10.7503/cjcu20220143
• Review • Previous Articles Next Articles
TAO Yu1, OU Honghui2(), LEI Yongpeng3, XIONG Yu1()
Received:
2022-03-07
Online:
2022-05-10
Published:
2022-04-20
Contact:
OU Honghui,XIONG Yu
E-mail:ou609717061@163.com;thomas153@126.com
Supported by:
CLC Number:
TrendMD:
TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide[J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143.
Entry | Catalyst | Product | Reactivity/(μmol?g?1?h?1) | Ref. |
---|---|---|---|---|
1 | Co/g?C3N4 | CH3OH | 235.5 a | [ |
2 | Ni5?CN | CO | 8.6 b | [ |
3 | Mo/g?C3N4 | CO/H2 | 18/37 b | [ |
4 | Cu/CN?0.25 | CO/CH3OH/CH4 | 11.21/1.75/0.61 a | [ |
5 | Cu?CCN | CO | 3.086 a | [ |
6 | PtCu?crCN | CO | 11.75 a | [ |
7 | RuSA?mC3N4 | CH3OH | 250 b | [ |
8 | Mn SAs?N?C | CO/H2 | 1470/1310 b~d | [ |
9 | Fe?SAS/N?C | CO/H2 | 4500/4950 b,c,d | [ |
10 | O/La?CN | CO | 92 b,f | [ |
11 | Au1/g?C3N4 | CO/CH4 | 8.68/0.84 b | [ |
12 | Cu1/TiO2 | C2H6 | 8.3 a | [ |
13 | Cu0.8Au0.2/TiO2 | CH4/C2H4 | 3578.9/369.8 a | [ |
14 | TiO2/Mg | CH3OH/CO | 5910/29.2 b | [ |
15 | Pt?Au/R?TNTs | CH4/C2H6 | 360.0/28.8 e | [ |
16 | Ag?HMO | CH4 | 6 b | [ |
17 | Ag?HMO | CH4 | 5.446 a | [ |
18 | MOF?525?Co | CO/CH4 | 200.6/6.67 b,f | [ |
19 | MOF?808?CuNi | CH4 | 158.7 b~d | [ |
20 | Mn?COF | CO/C2H4 | 6.19/3.57 a | [ |
21 | Co1?G Nanosheets | CO | 3.77 f | [ |
22 | Pt SA/CTF?1 | CH4 | 4.6 a,d | [ |
23 | W18O49@Co | CO | 21.18 a,c,d | [ |
24 | Co1?C3N4@α?Fe2O3 | CO | 25.2 b | [ |
25 | Ni?SA?x/ZrO2 | CO | 11.8 a | [ |
26 | Ru/CdS | CH4 | 8.11 a | [ |
27 | Er1/CN?NT | CO/CH4 | 47.1/2.5 b | [ |
28 | Pd1+NPs/C3N4 | CH4 | 20.3 a | [ |
Table 1 Recent reports in photoreduction of carbon dioxide by single-atom catalysts
Entry | Catalyst | Product | Reactivity/(μmol?g?1?h?1) | Ref. |
---|---|---|---|---|
1 | Co/g?C3N4 | CH3OH | 235.5 a | [ |
2 | Ni5?CN | CO | 8.6 b | [ |
3 | Mo/g?C3N4 | CO/H2 | 18/37 b | [ |
4 | Cu/CN?0.25 | CO/CH3OH/CH4 | 11.21/1.75/0.61 a | [ |
5 | Cu?CCN | CO | 3.086 a | [ |
6 | PtCu?crCN | CO | 11.75 a | [ |
7 | RuSA?mC3N4 | CH3OH | 250 b | [ |
8 | Mn SAs?N?C | CO/H2 | 1470/1310 b~d | [ |
9 | Fe?SAS/N?C | CO/H2 | 4500/4950 b,c,d | [ |
10 | O/La?CN | CO | 92 b,f | [ |
11 | Au1/g?C3N4 | CO/CH4 | 8.68/0.84 b | [ |
12 | Cu1/TiO2 | C2H6 | 8.3 a | [ |
13 | Cu0.8Au0.2/TiO2 | CH4/C2H4 | 3578.9/369.8 a | [ |
14 | TiO2/Mg | CH3OH/CO | 5910/29.2 b | [ |
15 | Pt?Au/R?TNTs | CH4/C2H6 | 360.0/28.8 e | [ |
16 | Ag?HMO | CH4 | 6 b | [ |
17 | Ag?HMO | CH4 | 5.446 a | [ |
18 | MOF?525?Co | CO/CH4 | 200.6/6.67 b,f | [ |
19 | MOF?808?CuNi | CH4 | 158.7 b~d | [ |
20 | Mn?COF | CO/C2H4 | 6.19/3.57 a | [ |
21 | Co1?G Nanosheets | CO | 3.77 f | [ |
22 | Pt SA/CTF?1 | CH4 | 4.6 a,d | [ |
23 | W18O49@Co | CO | 21.18 a,c,d | [ |
24 | Co1?C3N4@α?Fe2O3 | CO | 25.2 b | [ |
25 | Ni?SA?x/ZrO2 | CO | 11.8 a | [ |
26 | Ru/CdS | CH4 | 8.11 a | [ |
27 | Er1/CN?NT | CO/CH4 | 47.1/2.5 b | [ |
28 | Pd1+NPs/C3N4 | CH4 | 20.3 a | [ |
1 | Sakimoto K., Komienko N., Yang P., Acc. Chem. Res., 2017, 50(3), 476—481 |
2 | Rao H., Schmidt L., Bonin J., Robert M., Nature, 2017, 548, 74—77 |
3 | Li C. W., Ciston J., Kanan M. W., Nature, 2014, 508, 504—508 |
4 | Tachibana Y., Vayssieres L., Durrant J. R., Nat. Photonics, 2012, 6(8), 511—518 |
5 | Avanesian T., Gusmão G. S., Christopher P., J. Catal., 2016, 343, 86—96 |
6 | Zhong H. X., Meng F. L., Zhang Q., Liu. K. H., Zhang X. B., Nano Res., 2019, 12(9), 2318—2323 |
7 | Tan D. X., Cui. C. N., Shi J. B., Luo Z. X., Zhang B. X., Tan X. N., Han B. X., Zheng L. R., Zhang J., Zhang J. L., Nano Res., 2019, 12(5), 1167—1172 |
8 | Kuang M., Guan A. X., Gu Z. X., Han P., Qian L. P., Zheng G. F., Nano Res., 2019, 12(9), 2324—2329 |
9 | Ji Y., Shi Y. M., Liu C. B., Zhang B., Sci. China Mater., 2020, 63(11), 2351—2357 |
10 | Li X., Wen J. Q., Low J. X., Fang Y. P., Yu J. G., Sci. China Mater., 2014, 57(1), 70—100 |
11 | Cao S. W., Li Y., Zhu B. C., Jaroniec M., Yu J. G., J. Catal., 2017, 349, 208—217 |
12 | Cometto C., Kuriki R., Chen L. J., Maeda K., Ishitani O., Robert M., J. Am. Chem. Soc., 2018, 140(24), 7437—7440 |
13 | Kuriki R., Sekizawa K., Ishitani O., Maeda K., Angew. Chem. Int. Ed., 2015, 54(18), 2406—2409 |
14 | Bi Q. Q., Wang J. W., Lv J. X., Wang J. Zhang W., Lu T. B., ACS Catal., 2018, 8(12), 11815—11821 |
15 | Cui X. J., Shi F., Acta Phys. Chim. Sin., 2021, 37(5), 2006080 |
16 | Ruan C. Y., Huang Z. Q., Lin J., Li L., Liu X. Y., Tian M., Huang C. D., Chang C. R., Li J., Wang X. D., Energy Environ. Sci., 2019, 12(2), 767—779 |
17 | Zhao T. T., Feng G. H., Chen W., Song Y. F., Dong X., Li G. H., Zhang H. J., Wei W., Chinese J. Catal., 2019, 40(10), 1421—1437 |
18 | Zavabeti A., Jannat A., Zhong L., Haidry A. A., Yao Z. J., Ou J. Z., Nano⁃Micro Lett., 2020, 12(1), 66 |
19 | Hsu H. C., Shown I., Wei H. Y., Chang Y. C., Du H. Y., Lin Y. Gu., Tseng C. A., Wang C. H., Nanoscale, 2013, 5(1), 262—268 |
20 | Shehzad N., Johari K., Murugesan T., Tahir M., Int. J. Automo. Mech. E, 2018, 15(1), 4909—4918 |
21 | Qin J. N., Wang S. B., Ren H., Hou Y. D., Wang X. C., Appl. Catal. B: Environ., 2015, 179, 1—8 |
22 | Lin J. L., Pan Z. M., Wang X. C., ACS Sustain. Chem. Eng., 2014, 2(3), 353—358 |
23 | Ou H. H., Tang C., Chen X. R., Zhou M., Wang X. C., ACS Catal., 2019, 9(4), 2949—2955 |
24 | Mao J., Peng T. Y., Zhang X. H., Li K., Ye L. Q., Zan., Catal. Sci. Technol., 2013, 3(5), 1253—1260 |
25 | Ou H. H., Tang C., Zhang Y. F., Asiri A. M., Titirici M. M., Wang X. C., J. Catal., 2019, 375, 104—112 |
26 | Ahmeda N., Morikawa M., Izumi Y., Catal. Today, 2012, 185(1), 263—269 |
27 | Teramura K., Iguchi S., Mizuno Y., Shishido T., Tanaka T., Angew Chem. Int. Ed., 2012, 51(32), 8008—8011 |
28 | Zhao Y. F., Chen G. B., Bian T., Zhou C., Wu L. Z., Tung C. H., Zhang T. R., Adv. Mater., 2015, 27(47), 7824—7831 |
29 | Kawamuraa S., Puscasub M. C., Yoshidaa Y., Izumi Y., Carja G., Appl. Catal. A: Gen., 2015, 504, 238—247 |
30 | Maina J. W., Pozo⁃Gonzalo C., Kong L., Schütz J., Hill M., Dumée L. F., Mater. Horiz., 2017, 4(3), 345 |
31 | Liu J., Thallapally P. K., McGrail B. P., Brown D. R., Liu J., Chem. Soc. Rev., 2012, 41(6), 2308 |
32 | Simmons J. M., Wu H., Zhou W., Yildirim T., Energy Environ. Sci., 2011, 4(6), 2177 |
33 | Sumida K., Rogow D. L., Mason J. A., Mcdonald T. M., Bloch E. D., Herm Z. R., Bae T. H., Long J. R., Chem. Rev., 2012, 112(2), 724 |
34 | Wang L. J., Wang R. L., Zhang X., Mu J. L., Zhou Z. Y., Su Z. M., ChemSusChem, 2020, 13(11), 2973—2980 |
35 | Gong Y. N., Zhong W. H., Li Y., Qiu Y. Z., Zheng L. R., Jiang J., J. Am. Chem. Soc., 2020, 142(39), 16723—16731 |
36 | Xiong Y., Dong J. C., Huang Z. Q., Xin P. Y., Chen W. X., Wang Y., Li Z., Jin Z., Xing W., Xing Z. B., Zhuang J. Y., Ye X., Wei R., Cao L., Gu S. G., Sun L., Zhuang X. Q., Chen H. Yang., Chen C., Peng Q., Chang C. R., Wang D. S., Li Y. D., Nat. Nanotechnol., 2020, 15(5), 390—397 |
37 | Sun Q. M., Wang N., Zhang T. J., Bai R. S., Mayoral A., Zhang P., Zhang Q. H., Terasaki O., Yu J. H., Angew. Chem. Int. Ed., 2019, 58(51), 18570—18576 |
38 | Wan J. W., Chen W. X., Jia C. Y., Zheng L. R., Dong J. C., Zheng X. S., Wang Y., Yan W. S., Chen C., Peng Q., Wang D. S., Li Y. D., Adv. Mater., 2018, 30(11), 1705369 |
39 | Fu N. H., Liang X., Nano Res., 2020, 13(4), 947—951 |
40 | Jing H. Y., Zhu P., Zheng X. B., Zhang Z. D., Wang D. S., Li Y. D., Adv. Powder Mater., 2022, 1(1), 100013 |
41 | Xiong J. Y., Wang S. S., Xu Y. Q., Hu C. W., Chem. J. Chinese Universities, 2020, 41(6), 1262—1268 |
熊俊宇, 王姗姗, 许颜清, 胡长文. 高等学校化学学报, 2020, 41(6), 1262—1268 | |
42 | Peng X. M., Wu J. Q., Dai H. L., Yang Z. H., Chem. J. Chinese Universities, 2021, 42(8), 2581—2591 |
彭小明, 吴健群, 戴红玲, 杨展宏. 高等学校化学学报, 2021, 42(8), 2581—2591 | |
43 | Xiong Y., Sun W. M., Han Y. H., Xin P. Y., Zheng X. S., Yan W. S., Dong J. C., Zhang J., Wang D. S., Li Y. D., Nano Res., 2021, 14, 2418—2423 |
44 | Xiong Y., Sun W. M., Xin P. Y., Chen W. X., Zheng X. S., Yan W. S., Zheng L. R., Dong J. C., Zhang J., Wang D. S., Li Y. D., Adv. Mater., 2020, 32(34), 2000896 |
45 | Lee B. H., Park S. , Kim M., Sinha A. K., Lee S. C., Jung E., Chang W. J., Lee K. S., Kim J. H., Cho S. P., Kim H., Nam K. T., Hyeon T., Nat. Mater., 2019, 18(6), 620—626 |
46 | Wang J. H., Yin S. M., Zhang Q. H., Cao F. L., Xing Y. C., Zhao Q. S., Wang Y., Xu W. G., Wu W. T., Wu M. B., J. Catal., 2021, 404, 89—95 |
47 | Ou H. H., Wang D. S., Li Y. D., Nano Select, 2021, 2, 492—511 |
48 | Yang D. R., Yu H. D., He T., Zuo S. W., Liu X. Z., Yang H. Z., Ni B., Li H. Y., Gu L., Wang D., Wang X., Nat. Commun., 2019, 10, 3844 |
49 | Ma M. Z., Huang Z. A., Doronkin D. E., Fa W. J., Rao Z. Q., Zou Y. Z., Wang R., Zhong Y. Q., Cao Y. H., Zhang R. Y., Zhou Y., Appl. Catal. B: Environ., 2022, 300, 120695 |
50 | Cheng L., Yin H., Cai C., Fan J., Xiang Q., Small, 2020, 16(28), 2002411 |
51 | Zhang R. Y., Lia P. H., Wang F., Ye L. Q., Zhao Z. Y., Yang B., Zhou Y., Appl. Catal. B: Environ., 2019, 250, 273—279 |
52 | Wang J., Heil T., Zhu B. C., Tung C. W., Yu J. G., Chen H. M., Antonietti M., Cao S. W., ACS Nano, 2020, 14(7), 8584—8593 |
53 | Li Y., Li B. H., Zhang D. N., Cheng L., Xiang Q. J., ACS Nano, 2020, 14(8), 10552—10561 |
54 | Cheng L., Zhang P., Wen Q. Y., Fan J. J., Xiang Q. J., Chinese J. Catal., 2022, 43(2), 451—460 |
55 | Sharma P., Kumar S., Tomanec O., Petr M., Gawande M. B., Zbořil R., Small, 2021, 17(6), 2006478 |
56 | Yang J., Wang Z. Y., Jiang J. C., Chen W. X., Liao F., Ge X., Zhou X., Chen M., Zhang G. Q., Wang Y. G., Wu Y., Nano Energy, 2020, 76, 105059 |
57 | Wang Z. Y., Yang J., Cao J. B., Chen W. X., Wang G., Liao F., Zhou X., Zhou F. Y., Li R. L., Zhang G. Q., Duan X. Z., Wu Y. E., ACS Nano, 2020, 14(5), 6164—6172 |
58 | Chen P., Lei B., Dong X. A., Wang H., Sheng J. P., Cui W., Li J. Y., Sun Y. J., Wang Z. M., Dong F., ACS Nano, 2020, 14(5), 15841—15852 |
59 | Yang Y. L., Li F., Chen J., Fan J. J., Xiang Q. J., ChemSusChem, 2020, 13(8), 1979—1985 |
60 | Lee B. H., Gong E., Kim M., Park S., Kim H. R., Lee J., Jung E., Lee C. W., Kim H., Hyeon T., Energ. Environ. Sci., 2022, 15(2), 601—609 |
61 | Yu Y. Y., Dong X. A., Chen P., Geng Q., Wang H., Li J. Y., Zhou Y., Dong F., ACS Nano, 2021, 15(9), 14453—14464 |
62 | Olowoyo J. O., Kumar M., Singhal N., Jain S. L., Babalola J. O., Vorontsov A. V., Kumar U., Catal. Sci. Technol., 2018, 8(14), 3686—3694 |
63 | Pan H. H., Wang X. G., Xiong Z. W., Sun M. H., Murugananthan M., Zhang Y. R., Environ. Res., 2021, 198, 111176 |
64 | Ding J., Liu X. F., Shi M. G., Li T., Xia M. Y., Du X. W., Shang R. L., Gu H., Zhong Q., Sol. Energ. Mat. Sol. C, 2019, 195, 34—42 |
65 | Xia M. Y., Ding J., Du X. W., Shang R. L., Zhong Q., J. Alloy. Compd., 2019, 777, 406—414 |
66 | Zhang H. B, Wei J., Dong J. C., Liu G. G., Shi L., An P. F., Zhao G. X., Kong J. T., Wang X. J., Meng X. G., Zhang J., Ye J. H., Angew. Chem. Int. Ed., 2016, 55(46), 14310—14314 |
67 | Li J., Huang H. L., Xue W. J., Sun K., Song X. H., Wu C. R., Nie L., Li Y., Liu C. Y., Pan Y., Jiang H. L., Mei D. H., Zhong C. L., Nat. Catal., 2021, 4(8), 719—729 |
68 | Kou M. P., Liu W., Wang Y. Y., Huang J. D., Chen Y. L., Zhou Y., Chen Y., Ma M. Z., Lei K., Xie H. Q., Wong K., Ye L. Q., Appl. Catal. B: Environ., 2021, 291, 120146 |
69 | Gao C., Chen S. G., Wang Y., Wang J. W., Zheng X. S., Zhu J. F., Song L., Zhang W. K., Xiong Y. J., Adv. Mater., 2018, 30(13), 1704624 |
70 | Huang G. C., Niu Q., Zhang J. W., Huang H. M., Chen Q. S., Bi J. H., Wu L., Chem. Eng. J., 2022, 427, 131018 |
71 | Zhang H. B., Wang Y., Zhou S. W., Zhang J., Lou X. W. D., J. Am. Chem. Soc., 2021, 143(5), 2173—2177 |
72 | He B. C., Zhang C., Luo P. P., Li Y., Lu T. B., Green Chem., 2020, 22(21), 7552—7559 |
73 | Xiong X. Y., Mao C. L., Yang Z. J., Zhang Q. H., Waterhouse G. I. N., Gu L., Zhang T. R., Adv. Energy Mater., 2020, 10(46), 2002928 |
74 | Cai S. C., Zhang M., Li J. J., Chen J., Jia H. P., Sol. RRL., 2021, 5(2), 2000313 |
75 | Ji S. F., Qu Y., Wang T., Chen Y. J., Wang G. F., Li X., Dong J. C., Chen Q. Y., Zhang W. Y., Zhang Z. D., Liang S. Y., Yu R., Wang Y., Wang D. S., Li Y. D., Angew. Chem. Int. Ed., 2020, 59(26), 10651—10657 |
76 | Liu P. G., Huang Z. X., Gao X. P., Hong X., Zhu J. F., Wang G. M., Wu Y., Zeng J., Zheng X. S., Adv. Mater., 2022, 34(16),2200057 |
77 | Li Y., Li X., Zhang H., Xiang Q., Nanoscale Horiz., 2020, 5, 765 |
78 | Xie W., Song Y., Li S., Li J., Yang Y., Liu W., Shao M., Wei M., Adv. Funct. Mater., 2019, 29(50), 1906477 |
79 | Liu W., Cao L., Cheng W., Cao Y., Liu X., Zhang W., Mou X., Jin L., Zheng X., Che W., Liu Q., Yao T., Wei S., Angew. Chem. Int Ed., 2017, 56(32), 9312—9317 |
80 | Huang P., Huang J., Pantovich S. A., Carl A. D., Fenton T. G., Caputo C. A., Grimm R. L., Frenkel A. I., Li G. H., J. Am. Chem. Soc., 2018, 140(47), 16042—16047 |
81 | Gao G. P., Jiao Y., Waclawik E. R., Du A. J., J. Am. Chem. Soc., 2016, 138(19), 6292—6297 |
82 | Yu J., Low J., Xiao W., Zhou P., Jaroniec M., J. Am. Chem. Soc., 2014, 136(25), 8839—8842 |
83 | Ji Y., Luo Y., J. Am. Chem. Soc., 2016, 138(49), 15896—15902 |
84 | Selcuk S., Zhao X., Selloni A, Nat. Mater., 2018, 17(10), 923—928 |
85 | Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science, 2011, 293, 269—271 |
86 | Scanlon D. O., Dunnill C. W., Buckeridge J., Shevlin S. A., Logsdail A. J., Woodley S. M., Catlow C. R. A., Powell M. J., Palgrave R. G., Parkin I. P., Watson G. W., Keal T. W., Sherwood P., Walsh A., Soko A. A., Nat. Mater., 2013, 12, 798—801 |
87 | Long R., Li Y., Liu Y., Che S. N., Zheng X., Gao C., He C., Chen N., Qi Z., Song, L., Jiang J., Zhu J., Xiong Y., J. Am. Chem. Soc., 2017, 139(12), 4486—4492 |
88 | Du Y., Hua Z., Huang W., Wu M., Wang M., Wang J., Chem. Commun., 2015, 51(27), 5887—5889 |
89 | Wang J., Zhu J., Zhou X., Du Y., Huang W., Liu J., J. Mater. Chem. A, 2015, 3(13), 7631—7638 |
90 | Ding M. L., Flaig R. W., Jiang H. L., Yaghi O. M., Chem. Soc. Rev., 2019, 48(10), 2783—2828 |
91 | Trickett C. A., Helal A., Al⁃Maythalony B. A., Yamani Z. H., Cordova K. E., Yaghi O. M., Nat. Rev. Mater., 2017, 2(8), 17045 |
92 | Li D. D., Kassymova M., Cai X. C., Zang S. Q., Jiang H. L., Coord. Chem. Rev., 2020, 412, 213262 |
93 | Huang N., Wang P., Jiang D., Nat. Rev. Mater., 2016, 1(10), 16068 |
94 | Wang H. Q., Nano Res., 2022, 15(4), 2834—2854 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[3] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[4] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[5] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[6] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[7] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[8] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[9] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[10] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[11] | ZHANG Yichao, ZHAO Fulai, WANG Yu, WANG Yaling, SHEN Yongtao, FENG Yiyu, FENG Wei. Experimental Optimization and Theoretical Simulation of High Performance Field-effect Transistors Based on Multilayer Tungsten Diselenide [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220113. |
[12] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[13] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[14] | ZHAO Wanjun, LI Xiao, Dang Hui, WANG Yongzhao, ZHAO Yongxiang. Preparation of Supported Pd-Cu Catalyst and Its Preferential Oxidation of CO Under Hydrogen-rich Atmosphere [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210754. |
[15] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||