Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (9): 20220325.doi: 10.7503/cjcu20220325
• Perspectives • Previous Articles Next Articles
TENG Zhenyuan1(), ZHANG Qitao2, SU Chenliang2()
Received:
2022-05-11
Online:
2022-09-10
Published:
2022-07-15
Contact:
TENG Zhenyuan,SU Chenliang
E-mail:zy.teng@foxmail.com;chmsuc@szu.edu.cn
Supported by:
CLC Number:
TrendMD:
TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts[J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325.
1 | Wang A., Li J., Zhang T., Nat. Rev. Chem., 2018, 2, 65—81 |
2 | Qiao B., Wang A., Yang X., Lawrence F. A., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634—641 |
3 | Lang R., Du X., Huang Y., Jiang X., Zhang Q., Guo Y., Liu K., Qiao B., Wang A., Zhang T., Chem. Rev., 2020, 120, 11986—12043 |
4 | Gao C., Low J., Long R., Kong T., Zhu, J., Xiong Y., Chem. Rev., 2020, 120, 12175—12216 |
5 | Hai X., Xi S., Mitchell S., Harrath K., Xu H., Akl D. F., Kong D., Li J., Li Z., Sun T., Yang H., Cui Y., Su C., Zhao X., Li J., Perez⁃Ramirez J., Lu J., Nat. Nanotechnol., 2022, 17, 174—181 |
6 | Yang H., Shang L., Zhang Q., Shi R., Geoffrey I. N. W., Gu L., Zhang T., Nat. Commum., 2019, 10, 4585 |
7 | Yan H., Su C., He J., Chen W., J. Mater. Chem. A, 2018, 6, 8793—8814 |
8 | Yan H., Zhao X., Guo N., Lyu Z., Du Y., Xi S., Guo R., Cheng C., Chen Z., Liu W., Yao C., Li J., Pennycook S., J., Chen W., Su C., Zhang C., Lu J., Nat. Commun., 2018, 9, 1—9 |
9 | Li X., Bi W., Zhang L., Tao S., Chu W., Zhang Q., Luo Y., Wu C., Xie Y., Adv. Mater., 2016, 28, 2427—2431 |
10 | Li X., Fang Y., Wang J., Fang H., Xi S., Zhao X., Xu D., Xu H., Yu W., Hai X., Chen C., Yao C., Tao H. B., Howe A. G. R., Pennycook S. J., Liu B., Lu J., Su C., Nat. Commun., 2021, 12, 2351 |
11 | Ji S., Chen Y.,Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120, 11900—11955 |
12 | Hai X., Zhao X., Guo N., Yao C., Chen C., Liu W., Du Y., Yan H., Li J., Chen Z., Li X., Li Z., Xu H., Lyu P., Zhang J., Lin M., Su C., Stephen J. P., Zhang C., Xi S., Lu J., ACS Catal., 2020, 10, 5862—5870 |
13 | Xue Z. H., Luan D., Zhang H., Lou X. W., Joule, 2022, 6, 92—133 |
14 | Zhang Y., Cao Q., Wu X., Xiao Y., Meng A., Zhang Q., Yu Y., Zhang W. D., Chem. Eng. J., 2022, 427, 132042 |
15 | Chen C., Ou W., Yam K.-M., Xi S., Zhao X., Chen S., Li J., Lyu P., Ma L., Du Y., Yu W., Fang H., Yao C., Hai X., Xu H., Koh M. J., Pennycook S. J., Lu J., Lin M., Su C., Zhang C., Lu J., Adv. Mater., 2021, 33, 2008471 |
16 | Hai X., Zhao X., Guo N., Yao C., Chen C., Liu W., Du Y., Yan H., Li J., Chen Z., Li X., Li Z., Xu H., Lyu P., Zhang J., Lin M., Su C., Pennycook S. J., Zhang C., Xi S., Lu J., ACS Catal., 2020, 10, 5862—5870 |
17 | Sun H., Ma Y., Zhang Q., Su C., Trans. Tianjin Univ., 2021, 27, 313—330 |
18 | Zhang S., Ao X., Huang J., Wei B., Zhai Y., Zhai D., Deng W., Su C., Wang D., Li Y., Nano Lett., 2021, 21, 9691—9698 |
19 | Sun T., Zang W., Yan H., Li J., Zhang Z., Bu Y., Chen W., Wang J., Lu J., Su C., ACS Catal., 2021, 11, 4498—4509 |
20 | Wang F., Li J., Zhao J., Yang Y., Su C., Zhong Y. L., Yang Q. H., Lu J., ACS Mater. Lett., 2020, 2, 1450—1463 |
21 | Ciriminna R., Pagliaro M., Luque R., Green Energy Environ., 2021, 6, 161—166 |
22 | Sun T., Zhang G., Xu D., Lian X., Li H., Chen W., Su C., Mater. Today Energy, 2019, 12, 215—238 |
23 | Teng Z., Zhang Q., Yang H., Kato K., Yang W., Lu Y. R., Liu S., Wang C., Yamakata A., Su C., Liu B., Ohno T., Nat. Catal., 2021, 4, 374—384 |
24 | Xiong T., Cen W., Zhang Y., Dong F., ACS Catal., 2016, 6, 2462—2472 |
25 | Qiu C., Xu Y., Fan X., Xu D., Tandiana R., Ling X., Jiang Y., Liu C., Yu L., Chen W., Su C., Adv. Sci., 2019, 6, 1801403 |
26 | Jiang W., Zhao Y., Zong X., Nie H., Niu L., An L., Qu D., Wang X., Kang Z., Sun Z., Angew. Chem. Int. Ed., 2021, 60, 6124—6129 |
27 | Hendrik S., Julia K., Gökcen S., Maxwell W. T., Sebastian B., Igor M., Viola D., Filip P., Renée S., Jürgen S., Robert E. D., Christian O., Bettina V. L., Chem. Mater., 2019, 18, 7478—7486 |
28 | Li Y., Li B., Zhang D., Cheng L., Xiang Q., ACS Nano, 2020, 14, 10552—10561 |
29 | Dong P., Wang Y., Zhang A., Cheng T., Xi X., Zhang J., ACS Catal., 2021, 11, 13266—13279 |
30 | Gao G., Jiao Y., Waclawik E. R., Du A., J. Am. Chem. Soc., 2016, 138, 6292—6297 |
31 | Li Y., Wang Y., Dong C. L., Huang Y. C., Chen J., Zhang Z., Meng F., Zhang Q., Huangfu Y., Zhao D., Gu L., Shen S., Chem. Sci., 2021, 12, 3633—3643 |
32 | Chu C., Zhu Q., Pan Z., Gupta S., Huang D., Du Y., Weon S., Wu Y., Muhich C., Stavitski E., Domen K., Kim J. H., PNAS, 2020, 117, 6376—6382 |
33 | Nosaka Y., Nosaka A., Introduction to Photocatalysis: From Basic Science to Applications, the Royal Society of Chemistry, London, 2016 |
34 | Tao X., Zhao Y., Wang S., Li C., Li R., Chem. Soc. Rev., 2022, 51, 3561—3608 |
35 | Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D. W., Chem. Rev., 2014, 114, 9919—9986 |
36 | Fang Y., Hou Y., Fu X., Wang X., Chem. Rev., 2022, 122, 4204—4256 |
37 | Banerjee T., Podjaski F., Kroeger J., Biswal B. P., Lotsch B. V., Nat. Rev. Mater., 2021, 6, 168—190 |
38 | Zhang Z., Yates J. T. Jr., Chem. Rev., 2012, 112, 5520—5551 |
39 | María Q., Tomas E., Anders H., Gerrit B., J. Phys. Chem. C, 2006, 111, 1035 |
40 | Williams F., Nozik A. J., Nature, 1984, 312, 21—27 |
41 | Juan B., Peter C., Luca B., Sixto G., J. Phys. Chem. Lett., 2013, 5,205—207 |
42 | Wang Q., Domen K., Chem. Rev., 2019, 2, 919—985 |
43 | Liu T., Pan Z., Junie Jhon M. V., Kato K., Wu B., Yamakata A., Katayama K., Chen B., Chu C., Domen K., Nat. Commun., 2022, 13, 1034 |
44 | Nosaka Y., Nosaka A. Y., Chem. Rev., 2017, 117, 11302—11336 |
45 | Zhang Z., Xu Y., Zhang Q., Fang S., Sun H., Ou W., Su C., Sci. Bull., 2022, 67, 71—78 |
46 | Li Q., Ren C., Qiu C., He T., Zhang Q., Ling X., Xu Y., Su C., Chin. Chem. Lett., 2021, 32, 3463—3468 |
47 | Xu Y., Fan M., Yang W., Xiao Y., Zeng L., Wu X., Xu Q., Su C., He Q., Adv. Mater., 2021, 33, 2101455 |
48 | Meng A., Teng Z., Zhang Q., Su C., Asian J. Chem., 2020, 15, 3405—3415 |
49 | Zhang Z., Qiu C., Xu Y., Han Q., Tang J., Loh K. P., Su C., Nat. Commun., 2020, 11, 4722 |
50 | Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., Nat. Mater., 2009, 8, 76—80 |
51 | Park H., Kim H. I., Moon G. H., Choi W., Energy Environ. Sci., 2016, 9, 411—433 |
52 | Le Bahers T., Rerat M., Sautet P., J. Phys. Chem. C, 2014, 118, 5997—6008 |
53 | Takanabe K., ACS Catal., 2017, 7, 8006—8022 |
54 | Guiglion P., Butchosa C., Zwijnenburg M. A., Macromol. Chem. Phys., 2016, 217, 344—353 |
55 | Clarke T. M., Durrant J. R., Chem. Rev., 2010, 110, 6736—6767 |
56 | Teng Z., Cai W., Sim W., Zhang Q., Wang C., Su C., Ohno T., Appl. Catal. B: Environ., 2021, 282, 119589 |
57 | Lu T., Chen F., J. Comput. Chem., 2012, 33, 580—592 |
58 | Puschnig P., Ambrosch⁃Draxl C., C. R. Physique, 2009, 10, 504—513 |
59 | Rahman M. Z., Mullins C. B., Acc. Chem. Res., 2019, 52, 248—257 |
60 | Merschjann C., Tschierlei S., Tyborski T., Kailasam K., Orthmann S., Hollmann D., Schedel⁃Niedrig T., Thomas A., Lochbrunner S., Adv. Mater., 2015, 27, 7993—7999 |
61 | Pelzer K. M., Darling S. B., Mol. Syst. Des. Eng., 2016, 1, 10—24 |
62 | Bredas J. L., Mater. Horiz., 2014, 1, 17—19 |
63 | Lin L., Ou H., Zhang Y., Wang X., ACS Catal., 2016, 6, 3921—3931 |
64 | Takata T., Jiang J., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Nature, 2020, 581, 411—414 |
65 | Zhao D., Wang Y., Dong C. L., Huang Y. C., Chen J., Xue F., Shen S., Guo L., Nat. Energy, 2021, 6, 388—397 |
66 | Ohno T., Sarukawa K., Matsumura M., New J. Chem., 2002, 26, 1167—1170 |
67 | Li R., Zhang F., Wang D., Yang J., Li M., Zhu J., Zhou X., Han H., Li C., Nat. Commun., 2013, 4, 1432 |
68 | Petousis I., Mrdjenovich D., Ballouz E., Liu M., Winston D., Chen W., Graf T., Schladt T. D., Persson K. A., Prinz F. B., Sci. Data, 2017, 4, 160134 |
69 | Patra P. C., Mohapatra Y. N., Appl. Phys. Lett., 2021, 118 |
70 | Lin L., Lin Z., Zhang J., Cai X., Lin W., Yu Z., Wang X., Nat. Catal., 2020, 3, 649—655 |
71 | Wan Y., Wang L., Xu H., Wu X., Yang J., J. Am. Chem. Soc., 2019, 142, 4508—4516 |
72 | Guiglion P., Monti A., Zwijnenburg M. A., J. Phys. Chem. C, 2017, 121, 1498—1506 |
73 | Noda Y., Merschjann C., Tarabek J., Amsalem P., Koch N., Bojdys M. J., Angew. Chem. Int. Ed., 2019, 58, 9394—9398 |
74 | Tamai Y., Ohkita H., Benten H., Ito S., J. Phys. Chem. Lett., 2015, 6, 3417—3428 |
75 | Teng Z., Yang N., Lv H., Wang S., Hu M., Wang C., Wang D., Wang G., Chem., 2019, 5, 664—680 |
76 | Botiz I., Schaller R. D., Verduzco R., Darling S. B., J. Phys. Chem. C, 2011, 115, 9260—9266 |
77 | Kosco J., Gonzalez⁃Carrero S., Howells C. T., Fei T., Dong Y., Sougrat R., Harrison G. T., Firdaus Y., Sheelamanthula R., Purushothaman B., Moruzzi F., Xu W., Zhao L., Basu A., de Wolf S., Anthopoulos T. D., Durrant J. R., McCulloch I., Nat. Energy, 2022, 7, 340—351 |
78 | Lau V. W. H., Klose D., Kasap H., Podjaski F., Pignie M. C., Reisner E., Jeschke G., Lotsch B. V., Angew. Chem. Int. Ed., 2017, 56, 510—514 |
79 | Yang W., Godin R., Kasap H., Moss B., Dong Y., Hillman S. A. J., Steier L., Reisner E., Durrant J. R., J. Am. Chem. Soc., 2019, 141, 11219—11229 |
80 | Zhang P., Tong Y., Liu Y., Vequizo J. J. M., Sun H., Yang C., Yamakata A., Fan F., Lin W., Wang X., Choi W., Angew. Chem. Int. Ed., 2020, 59, 16209—16217 |
81 | Dong Z., Zhang L., Gong J., Zhao Q., Chem. Eng. J., 2021, 403, 2021 |
82 | Casida M. E., Huix⁃Rotllant M., Annu. Rev. Phys. Chem., 2012, 63, 287—323 |
83 | Laurent A. D., Jacquemin D., Int. J. Quantum Chem., 2013, 113, 2019—2039 |
84 | Ghuman K. K., Hoch L. B., Szymanski P., Loh J. Y. Y., Kherani N. P., E⁃Sayed M. A., Ozin G. A., Singh C. V., J. Am. Chem. Soc., 2016, 138, 1206—1214 |
85 | Norskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jonsson H., J. Phys. Chem. B, 2004, 108, 17886—17892 |
86 | Feng C., Wu Z. P., Huang K. W., Ye J., Zhang H., Adv. Mater., 2022, 2200180 |
87 | Esterhuizen J. A., Goldsmith B. R., Linic S., Nat. Catal., 2022, 5, 175—184 |
88 | Lin C., Kim T., Schultz J. D., Young R. M., Wasielewski M. R., Nat. Chem., 2022, 14, 786—793 |
89 | Wahab M. A., Joseph J., Atanda L., Sultana U. K., Beltramini J. N., Ostrikov K., Will G., O'Mullane A. P., Abdala A., ACS Appl. Energy Mater., 2020, 3, 1439—1447 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[4] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[5] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[6] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[7] | WENG Meiqi, SHANG Guiming, WANG Jiatai, LI Shenghua, FAN Zhi, LIN Song, GUO Minjie. Template Simulation of Organophosphorus Nerve Agent Molecularly Imprinted Polymers [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220136. |
[8] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[9] | WANG Zhengwen, GAO Fengxiang, CAO Han, LIU Shunjie, WANG Xianhong, WANG Fosong. Synthesis and Property of CO2 Copolymer⁃based UV-curable Polymer [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220236. |
[10] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[11] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[12] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[13] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[14] | JI Fa, LIU Ling, YU Linling, SUN Yan. Effects of Muco-inert and Acid-sensitive Modification on Mucosal Penetration of Nanoparticles [J]. Chem. J. Chinese Universities, 2022, 43(6): 20210837. |
[15] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||