Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220192.doi: 10.7503/cjcu20220192
• Article • Previous Articles Next Articles
XIA Wu1,2, REN Yingyi1, LIU Jing1, WANG Feng1()
Received:
2022-03-27
Online:
2022-07-10
Published:
2022-05-09
Contact:
WANG Feng
E-mail:wangfengchem@hust.edu.cn
Supported by:
CLC Number:
TrendMD:
XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192.
1 | Gust D., Moore T. A., Moore A. L., Acc. Chem. Res., 2009, 42(12), 1890—1898 |
2 | Styring S., Faraday Discuss., 2012, 155, 357—376 |
3 | Liu Z. M., Sun Z. Y., Acta Phys.⁃Chim. Sin., 2021, 37(5), 2012024 |
刘志敏, 孙振宇. 物理化学学报, 2021, 37(5), 2012024 | |
4 | Benson E. E., Kubiak C. P., Sathrum A. J., Smieja J. M., Chem. Soc. Rev., 2009, 38(1), 89—99 |
5 | Aresta M., Dibenedetto A., Dalton Trans., 2007, 36(28), 2975—2992 |
6 | Quadrelli E. A., Centi G., Duplan J. L., Perathoner S., ChemSusChem, 2011, 4(9), 1194—1215 |
7 | Li L., Li P. F., Wang B., Chem. J. Chinese Universities, 2020, 41(9), 1917—1932 |
李丽, 李鹏飞, 王博. 高等学校化学学报, 2020, 41(9), 1917—1932 | |
8 | He P. C., Zhou J., Zhou A. W., Dou Y. B., Li J. R., Chem. J. Chinese Universities, 2019, 40(5), 855—866 |
何鹏琛, 周健, 周阿武, 豆义波, 李建荣. 高等学校化学学报, 2019, 40(5), 855—866 | |
9 | Wang P., Yang M., Tang S. P., Chen F. T., Li Y. J., Chem. J. Chinese Universities, 2021, 42(6), 1924—1932 |
王鹏, 阳敏, 汤森培, 陈飞台, 李佑稷. 高等学校化学学报, 2021, 42(6), 1924—1932 | |
10 | Wu J., Liu J., Xia W., Ren Y. Y., Wang F., Acta Phys.⁃Chim. Sin., 2021, 37(5), 2008043 |
吴进, 刘京, 夏雾, 任颖异, 王锋. 物理化学学报, 2021, 37(5), 2008043 | |
11 | Tu W., Zhou Y., Zou Z., Adv. Mater., 2014, 26(27), 4607—4626 |
12 | Guo Q., Liang F., Li X. B., Gao Y. J., Huang M. Y., Wang Y., Xia S. G., Gao X. Y., Gan Q. C., Lin Z. S., Tung C. H., Wu L. Z., Chem, 2019, 5(10), 2605—2616 |
13 | Sheng H., Oh M. H., Osowiecki W. T., Kim W., Alivisatos A. P., Frei H., J. Am. Chem. Soc., 2018, 140(12), 4363—4371 |
14 | Xia W., Wu J., Hu J. C., Sun S., Li M. D., Liu H., Lan M., Wang F., ChemSusChem, 2019, 12(20), 4617—4622 |
15 | Fujiwara H., Hosokawa H., Murakoshi K., Wada Y., Yanagida S., Okada T., Kobayashi H., J. Phys. Chem. B, 1997, 101(41), 8270—8278 |
16 | Crovetto R., J. Phys. Chem. Ref. Data, 1991, 20(3), 575—589 |
17 | Wang H. Y., Hu R., Lei Y. J., Jia Z. Y., Hu G. L., Li C. B., Gu Q., Catal. Sci. Technol., 2020, 10(9), 2821—2829 |
18 | Yanagida S., Kanemoto M., Ishihara K. I., Wada Y., Sakata T., Mori H., Bull. Chem. Soc. Jpn., 1997, 70(9), 2063—2070 |
19 | Nguyen D. T., Chouat A., Do T. O., Sustain. Energ. Fuels, 2021, 5(16), 4015—4022 |
20 | Foster A. B., Webber J. M., Adv. Carbohyd. Chem., 1961, 15, 371—393 |
21 | Kumar S., Prasad K., Gil J. M., Sobral A., Koh J., Carbohydr. Polym., 2018, 198, 401—406 |
22 | Jung J., Puligundla P., Ko S., Food Chem., 2012, 135(4), 2170—2174 |
23 | Le H. Q., Sekiguchi Y., Ardiyanta D., Shimoyama Y., ACS Omega, 2018, 3(10), 14103—14110 |
24 | Song J., Liu J., Zhao W., Chen Y., Xiao H., Shi X., Liu Y., Chen X., Ind. Eng. Chem. Res., 2018, 57(14), 4941—4948 |
25 | Tamboli A. H., Chaugule A. A., Kim H., Fuel, 2016, 166, 495—501 |
26 | Shieh Y. T., Chen Y. D., Don T. M., Carbohydr. Polym., 2020, 241, 116408 |
27 | El⁃Azzami L. A., Grulke E. A., J. Membr. Sci., 2008, 323(2), 225—234 |
28 | Zhou D., Zhang L., Zhou J., Guo S., Water Res., 2004, 38(11), 2643—2650 |
29 | Jamshaid A., Hamid A., Muhammad N., Naseer A., Ghauri M., Iqbal J., Rafiq S., Shah N. S., ChemBioEng Rev., 2017, 4(4), 240—256 |
30 | Knowles K. E., Frederick M. T., Tice D. B., Morris⁃Cohen A. J., Weiss E. A., J. Phys. Chem. Lett., 2011, 3(1), 18—26 |
31 | Leatherdale C. A., Bawendi M. G., Phys. Rev. B, 2001, 63(16), 165315 |
32 | Xiong X., Zhao Y., Shi R., Yin W., Zhao Y., Waterhouse G. I. N., Zhang T., Sci. Bull., 2020, 65(12), 987—994 |
33 | Wang S., Han X., Zhang Y., Tian N., Ma T., Huang H., Small Struct., 2021, 2, 2000061 |
34 | Huang M. Y., Li X. B., Gao Y. J., Li J., Wu H. L., Zhang L. P., Tung C. H., Wu L. Z., J. Mater. Chem. A, 2018, 6(14), 6015—6021 |
35 | Wang F., Liang W. J., Jian J. X., Li C. B., Chen B., Tung C. H., Wu L. Z., Angew. Chem. Int. Ed., 2013, 52(31), 8134—8138 |
36 | Han H. Y., Sheng Z. H., Liang J. G., Mater. Lett., 2006, 60(29⁃30), 3782—3785 |
37 | Hirano S., Polym. Int., 1999, 48, 732—734 |
38 | Ma G., Yang D., Kennedy J. F., Nie J., Carbohydr. Polym., 2009, 75(3), 390—394 |
39 | Song Q., Zhang Z., Gao J., Ding C., J. Appl. Polym. Sci., 2011, 119(6), 3282—3285 |
40 | Suder B. J., Wightman J. P., Adsorption from Solution, Academic Press, New York, 1983, 235—244 |
41 | Piron E., Domard A., Int. J. Biol. Macromol., 1998, 22, 33—40 |
42 | Bayramoglu G., Yakup Arica M., Bektas S., J. Appl. Polym. Sci., 2007, 106(1), 169—177 |
43 | Kang B., Chang S. Q., Dai Y. D., Chen D., Radiat. Phys. Chem., 2008, 77(7), 859—863 |
44 | Shigemasa Y., Matsuura H., Sashiwa H., Saimoto H., Int. J. Biol. Macromol., 1996, 18(3), 237—242 |
45 | Brugnerotto J., Lizardi J., Goycoolea F. M., Arguelles⁃Monal W., Desbrieres J., Rinaudo M., Polymer, 2001, 42, 3569—3580 |
46 | Nieto J. M., Peniche⁃Covas C., Del Bosque J., Carbohydr. Polym., 1992, 18, 221—224 |
47 | Hasan S., Krishnaiah A., Ghosh T. K., Viswanath D. S., Ind. Eng. Chem. Res., 2006, 45, 5066—5077 |
48 | Wu Y., Chen C., Yan X., Sun X., Zhu Q., Li P., Li Y., Liu S., Ma J., Huang Y., Han B., Angew. Chem. Int. Ed., 2021, 60(38), 20803—20810 |
49 | Aldana J., Lavelle N., Wang Y., Peng X., J. Am. Chem. Soc., 2005, 127, 2496—2504 |
50 | Jian J. X., Liu Q., Li Z. J., Wang F., Li X. B., Li C. B., Liu B., Meng Q. Y., Chen B., Feng K., Tung C. H., Wu L. Z., Nat. Commun., 2013, 4, 2695 |
51 | Maachou H., Genet M. J., Aliouche D., Dupont⁃Gillain C. C., Rouxhet P. G., Surf. Interface Anal., 2013, 45(7), 1088—1097 |
52 | Lawrie G., Keen I., Drew B., Chandler⁃Temple A., Rintoul L., Fredericks P., Grøndahl L., Biomacromolecules, 2007, 8, 2533—2541 |
53 | Tauc J., Grigorovici R., Vancu A., Phys. Status Solidi, 1966, 15(2), 627—637 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[3] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[4] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[5] | LI Lin, QI Fenglian, QIU Lili, MENG Zihui. Dynamic Amorphous Photonic Structure Patterns Assembled by Hexagonal Magnetic Nanosheets [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220123. |
[6] | WU Yushuai, SHANG Yingxu, JIANG Qiao, DING Baoquan. Research Progress of Controllable Self-assembled DNA Origami Structure as Drug Carrier [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220179. |
[7] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
[8] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[9] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[10] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[11] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[12] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[13] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[14] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[15] | ZHOU Ying, HE Peinan, FENG Haisong, ZHANG Xin. Optimal Distribution of Active Sites of CO2 Reduction Reaction Catalyzed by Diatomic Site M-N-C [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||