Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (8): 20220202.doi: 10.7503/cjcu20220202
• Analytical Chemistry • Previous Articles Next Articles
LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong(), YANG Yunhui(), HU Rong()
Received:
2022-04-01
Online:
2022-08-10
Published:
2022-04-30
Contact:
YANG Tong,YANG Yunhui,HU Rong
E-mail:yt09132149@163.com;yyhui2002@aliyun.com;hudierong_168@163.com
Supported by:
CLC Number:
TrendMD:
LI Yulong, XIE Fating, GUAN Yan, LIU Jiali, ZHANG Guiqun, YAO Chao, YANG Tong, YANG Yunhui, HU Rong. A Ratiometric Electrochemical Sensor Based on Silver Ion Interaction with DNA for the Detection of Silver Ion[J]. Chem. J. Chinese Universities, 2022, 43(8): 20220202.
Method | Linear range | Detection limit | Reference |
---|---|---|---|
Fluorescence | 0.3—100 nmol/L | 80 pmol/L | [ |
Fluorescence | 0.1—10 μmol/L | 1.6 nmol/L | [ |
UV?Vis spectroscopy | 0.1 nmol/L—9 μmol/L | 0.042 nmol/L | [ |
Differential pulse voltammetry | 0.1 nmol/L—3 μmol/L | 71 pmol/L | [ |
Differential pulse voltammetry | 5 nmol/L—200 μmol/L | 1.97 nmol/L | [ |
Differential pulse voltammetry | 50—400 μmol/L | 2.15 μmol/L | [ |
Differential pulse voltammetry | 0.1—100 nmol/L | 33.4 pmol/L | This work |
Table 1 Comparison of different analytical methods for detecting Ag+
Method | Linear range | Detection limit | Reference |
---|---|---|---|
Fluorescence | 0.3—100 nmol/L | 80 pmol/L | [ |
Fluorescence | 0.1—10 μmol/L | 1.6 nmol/L | [ |
UV?Vis spectroscopy | 0.1 nmol/L—9 μmol/L | 0.042 nmol/L | [ |
Differential pulse voltammetry | 0.1 nmol/L—3 μmol/L | 71 pmol/L | [ |
Differential pulse voltammetry | 5 nmol/L—200 μmol/L | 1.97 nmol/L | [ |
Differential pulse voltammetry | 50—400 μmol/L | 2.15 μmol/L | [ |
Differential pulse voltammetry | 0.1—100 nmol/L | 33.4 pmol/L | This work |
ICr-MOFs | ICr-MOFs-SP/ IFc-RP | RSD(%) | |
---|---|---|---|
Non?ratiometric probe | 10.85 a ±1.989 b | 22.12 | |
Ratiometric probe | 2.76 a ±0.0701 b | 2.91 |
Table 2 Comparison of the proposed ratiometric sensor and non-ratiometric sensor
ICr-MOFs | ICr-MOFs-SP/ IFc-RP | RSD(%) | |
---|---|---|---|
Non?ratiometric probe | 10.85 a ±1.989 b | 22.12 | |
Ratiometric probe | 2.76 a ±0.0701 b | 2.91 |
Sample | Added/(nmol·L-1) | Found/(nmol·L-1) | RSD(%) | Recovery(%) |
---|---|---|---|---|
1 | 0.00 | No found | — | — |
2 | 1.00 | 1.03 | 1.94 | 98.7 |
1.05 | 100.4 | |||
1.01 | 96.8 | |||
3 | 5.00 | 4.91 | 3.00 | 97.3 |
5.07 | 100.5 | |||
5.14 | 102.0 | |||
4 | 10.0 | 10.1 | 1.84 | 100.7 |
10.3 | 103.0 | |||
9.97 | 99.2 |
Table 3 Recovery and determination of silver ions in the water samples of Dianchi Lake
Sample | Added/(nmol·L-1) | Found/(nmol·L-1) | RSD(%) | Recovery(%) |
---|---|---|---|---|
1 | 0.00 | No found | — | — |
2 | 1.00 | 1.03 | 1.94 | 98.7 |
1.05 | 100.4 | |||
1.01 | 96.8 | |||
3 | 5.00 | 4.91 | 3.00 | 97.3 |
5.07 | 100.5 | |||
5.14 | 102.0 | |||
4 | 10.0 | 10.1 | 1.84 | 100.7 |
10.3 | 103.0 | |||
9.97 | 99.2 |
1 | Zhao C., Qu K. G., Song Y. J., Xu C., Ren J. S., Qu X. G., Chem.⁃Eur. J., 2010, 16(27), 8147—8154 |
2 | Huy G. D., Zhang M., Zuo P., Ye B. C., Analyst, 2011, 136(16), 3289—3294 |
3 | Barriada J. L., Tappin A. D., Evans E. H., Achterberg E. P., Trac⁃Trends Anal. Chem., 2007, 26(8), 809—817 |
4 | Jang K., You J., Park C., Na S., New J. Chem., 2017, 41(4), 1840—1845 |
5 | Yang D. Y., Zhou T., Tu Y. F., Yan J. L., Microchim. Acta, 2021, 188(6), 212 |
6 | Gao Y. K., Zhang C. M., Yang Y. X., Yang N., Lu S. C., You T. T., Yin P. G., J. Alloy. Compd., 2021, 863, 158758 |
7 | Yang J. R., Dong P. F., Wang Y. K., Liu T. R., Huang Y. Y., Lei J. P., Analyst, 2021, 146(6), 1859—1864 |
8 | Chen P. P., Sawyer E., Sun K., Zhang X. L., Chen C., Ying B. W., Wei X. W., Wu Z. Z., Geng J., Talanta, 2019, 201, 9—15 |
9 | Wang G. K., Shao C. W., Yan C. L., Li D., Liu Y. F., J. Lumines., 2019, 210, 21—27 |
10 | Ono A., Cao S., Togashi H., Tashiro M., Fujimoto T., Machinami T., Oda S., Miyake Y., Okamoto I., Tanaka Y., Chem. Commun, 2008, 39, 4825—4827 |
11 | Wang Y. F., Shan D. L., Wu G. F., Ru F., Zhang X. H., Li L. F., Qian Y. X., Lu X.Q., Hung W., Biosens. Bioelectron., 2018, 106, 64—70 |
12 | Zhu C. X., Liu D., Li Y. Y., Shen X. L., Li L. B., Liu Y., You T. Y., Curr. Opin. Electrochem., 2019, 17, 47—55 |
13 | Xiao X., Li C. C., Liu Y. Z., Feng Y. Q., Han K., Xiang H. Y., Shi G. Y., Gu H., Analyst, 2021, 146(20), 6202—6210 |
14 | Liao Y. M., Gao J. X., Huang W. X., Yuan R., Xu W. J., Biosens. Bioelectron, 2020, 195, 113662 |
15 | Yu L. X., Zhai R., Gong X. Y., Xie J., Huang Z. J., Liu M. Y., Jiang Y., Dai X. H., Fang X., Yu X. P., Chin. J. Anal. Chem., 2019, 47(11), 1742—1750 |
16 | Yao Y., Wang G. X., Shi X. J., Li J. S., Yang F. Z., Cheng S. T., Zhang H., Dong H. W., Guo Y. M., Sun X., Wu Y. X., J. Mater. Sci., 2020, 55(33), 15975—15987 |
17 | Qasem N. A. A., Ben⁃Mansour R., Habib M. A., Appl. Energy, 2018, 210, 317—326 |
18 | Sun L., Park S. S., Sheberla D., Dinca M., J. Am. Chem. Soc., 2016, 138(44), 14772—14782 |
19 | Dou S., Song J. J., Xi S. B., Du Y. H., Wang J., Huang Z. F., Xu Z. C. J., Wang X., Angew. Chem. Int. Ed., 2019, 58(12), 4041—4045 |
20 | Liu T. Z., Hu R., Zhang X., Zhang K. L., Liu Y., Zhang X. B., Bai R. Y., Li D. L., Yang Y. H., Anal. Chem., 2016, 88(24), 12516—12523 |
21 | Lv S. Z., Tang Y., Zhang K. Y., Tang D. P., Anal. Chem., 2018, 90(24), 14121—14125 |
22 | Dai W. L., Mao P., Liu Y., Zhang S. Q., Li B., Yang L. X., Luo X. B., Zou J. P., J. CO2 Util., 2020, 36, 295—305 |
23 | Han X. R., Study on the Synthesis and Electrochemical Performance of Zinc Cobaltate Electrode Material, North University of China, Taiyuan, 2019 |
韩兴荣. 钴酸锌电极材料的合成及其电化学性能研究, 中北大学, 太原: 2019 | |
24 | Gnanamoorthy G., Ramar K., Ali D., Yadav V. K., Sureshbabu K., Narayanan V., Chem. Phys. Lett., 2020, 759, 137988 |
25 | Zhao R. Z., Li Q., Wang C. X., Yin L. W., Electrochim. Acta, 2016, 197, 58—67 |
26 | Pan L., Zhu Q. Y., Tian D., J. Sol⁃Gel Sci. Technol., 2019, 90(3), 525—534 |
27 | Li J., Fan C. H., Pei H., Shi J. Y., Huang Q., Adv. Mater., 2013, 25(32), 4386—4396 |
28 | Huang M. F., Kuo Y. C., Huang C. C., Chang H. T., Anal. Chem., 2004, 76(1), 192—196 |
29 | Lin Y. C., Lin H., Wang H. M., Suo Y. G., Li B. H., Kong C. L., Chen L., J. Mater. Chem. A, 2014, 2(35), 14658—14665 |
30 | Wang D., Qi X. J., Gao H. Y., Yu J. G., Zhao Y. N., Zhou G. T., Li G. D., Mater. Lett., 2016, 164, 93—96 |
31 | Li D. L., Zhang X., Ma Y. C., Deng Y., Hu R., Yang Y. H., Anal. Methods, 2018, 10(26), 3273—3279 |
32 | Wen X. L., Chen Z., Liu E. H., Lin X., Appl. Surf. Sci., 2015, 357, 1212—1216 |
33 | Chen P., Xiao T. Y., Qian Y. H., Li S. S., Yu S. H., Adv. Mater., 2013, 25(23), 3192—3196 |
34 | Chen X., Gao H. Y., Yang M., Xing L. W., Dong W. J., Li A., Zheng H. Y., Wang G., Energy Storage Mater., 2019, 18, 349—355 |
35 | Zhang Y. H., Zhou K., Qiu Y., Xia L., Xia Z. N., Zhang K. L., Fu Q. F., Sens. Actuator B: Chem., 2021, 339, 129922 |
36 | An J., Chen R. B., Chen M. Z., Hu Y. Q., Lyu Y., Liu Y. F., Sens. Actuator B: Chem., 2021, 329, 129097 |
37 | Mao L. H., Wang Q. Q., Luo Y. H., Gao Y. P., Talanta, 2021, 222, 121506 |
38 | Fu L., Wang A. W., Xie K. F., Zhu J. W., Chen F., Wang H. G., Zhang H. W., Su W. T., Wang Z. G., Zhou C. T., Ruan S. C., Sens. Actuator B: Chem., 2020, 304, 127390 |
39 | Yu X. H., Wang Z. X., Gao Y. F., Kong F. Y., Lv W. X., Ma H. F., Wang W., Int. J. Electrochem. Sci., 2018, 13(3), 2875—2886 |
40 | Fu Y., Yang Y. J., Tuersun T., Yu Y., Zhi J. F., Analyst, 2018, 143(9), 2076—2082 |
[1] | WEI Chuangyu, CHEN Yanli, JIANG Jianzhuang. Fabrication of Electrochemical Sensor for Dopamine and Uric Acid Based on a Novel Dimeric Phthalocyanine-involved Quintuple-decker Modified Indium Tin Oxide Electrode [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210582. |
[2] | DU Shunfu, WANG Wenjing, EL⁃SAYED El⁃Sayed M., SU Kongzhao, YUAN Daqiang, HONG Maochun. A Chemiluminescent Zirconocene Coordination Tetrahedron [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210628. |
[3] | LIU Zhaoyang, SONG Yongxin, WANG Tianshu, SHAN Guiye. Preparation of Histidine Modified Prussian Blue and Its Interaction with Silver Ions† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1492. |
[4] | FU Kefei, LIAN Huiting, WEI Xiaofeng, SUN Xiangying, LIU Bin. Construction of Cyclodextrin-based Impedance Sensor for Recognition of L-Cysteine † [J]. Chem. J. Chinese Universities, 2020, 41(4): 706. |
[5] | LI Botian,SHAO Wei,XIAO Da,ZHOU Xue,DONG Junwei,TANG Liming. Polypyrrole Nanowire Gels Based on Templating Fabrication and Their Energy Storage and Electrochemical Sensing Properties † [J]. Chem. J. Chinese Universities, 2020, 41(1): 183. |
[6] | JING Run,LU Xinhuan,ZHANG Haifu,TAO Peipei,PAN Haijun,HU Ao,ZHOU Dan,XIA Qinghua. Highly Efficient MIL-101(Fe) Catalyst for the Preparation of Nopol by the Prins Condensation of β-Pinene and Formaldehyde† [J]. Chem. J. Chinese Universities, 2019, 40(4): 755. |
[7] | LI Min, KONG Huifang, GUO Zhihui. Detection of Copper Ion Based on the Interaction Between DNA Molecules and Copper Ions† [J]. Chem. J. Chinese Universities, 2016, 37(7): 1269. |
[8] | HU Yiping, SHAN Duoliang, LU Xiaoquan. Nonenzyme Sensor Based on Metal Organic Frameworks/Porphyrin/Multiwalled Carbon Nanotubes for Detection of Glucose† [J]. Chem. J. Chinese Universities, 2016, 37(6): 1082. |
[9] | ZHANG Yan, ZHENG Jing, WANG Juan, GUO Mandong. Preparation and Properties of Doxorubicin Hydrochloride Sensor Based on Molecularly Imprinted Polymer† [J]. Chem. J. Chinese Universities, 2016, 37(5): 860. |
[10] | ZHUANG Qianfen, WANG Yong, NI Yongnian. Electrochemical Sensor for the Detection of Riboflavin Based on Nanocomposite Film of Polydeoxyadenylic Acid/Reduced Graphene Oxide† [J]. Chem. J. Chinese Universities, 2015, 36(9): 1674. |
[11] | HUANG Xueyi, YU Huicheng, WEI Yichun, LEI Fuhou, TAN Xuecai, WU Haiying. Preparation and Application of Novel Amobarbital Electrochemical Sensor Based on CuO Nanoparticles Modified Glassy Carbon† [J]. Chem. J. Chinese Universities, 2014, 35(10): 2078. |
[12] | ZHANG Jin, WANG Chao-Ying, LI Xiao-Ping, NIU Yan-Hui. Molecularly Imprinted Electrochemical Sensor for 2, 4-Dichlorophenol Based on Composite Film of o-Aminothiophenol and Au Nanoparticles [J]. Chem. J. Chinese Universities, 2013, 34(10): 2296. |
[13] | WANG Lin, TAN Xue-Cai, ZHAO Dan-Dan, LIU Li, LEI Fu-Hou, HUANG Zai-Yin, GONG Qi. Electrochemical Sensor for Caffeine Detection Based on Molecularly Imprinted Polymer with Maleic Rosin Acrylic Acid Glycol Ester as Cross-linker [J]. Chem. J. Chinese Universities, 2012, 33(08): 1708. |
[14] | LI Lin-Ru, FU Hong-Gang, LU Tian-Hong. Electrocatalytic Performance of Graphene Supported Ir Catalyst for Ammonia Oxidation [J]. Chem. J. Chinese Universities, 2012, 33(01): 102. |
[15] | HU Yu-Fang, ZHANG Zhao-Hui*, ZHANG Hua-Bin, YU Xiao-Xiao, YAO Shou-Zhuo. Research on Self-assembly MWNTs-clindamycin Molecularly Imprinted Sol-gel Electrochemical Sensor [J]. Chem. J. Chinese Universities, 2009, 30(9): 1703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||