Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220064.doi: 10.7503/cjcu20220064
• Review • Previous Articles Next Articles
QIU Liqi, YAO Xiangyang, HE Liangnian()
Received:
2022-01-26
Online:
2022-07-10
Published:
2022-03-04
Contact:
HE Liangnian
E-mail:heln@nankai.edu.cn
Supported by:
CLC Number:
TrendMD:
QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064.
Reaction potentials of CO2 and proton | E |
---|---|
C(Ⅳ)O2 + e? →C(Ⅲ)O2? ? | -1.90 |
C(Ⅳ)O2 + 2(H+ + e?) → HC(Ⅱ)OOH | -0.61 |
C(Ⅳ)O2 + 2(H+ + e?) → CO(Ⅱ) + H2O | -0.53 |
C(Ⅳ)O2 + 4(H+ + e?) → HC(0)HO + H2O | -0.48 |
C(Ⅳ)O2 + 6(H+ + e?) → C(-Ⅱ)H3OH + H2O | -0.38 |
C(Ⅳ)O2 + 8(H+ + e?)→ C(-Ⅳ)H4 + 2H2O | -0.24 |
2(H+ + e?) → H2 | -0.42 |
Table 1 Thermodynamic potentials of CO2 and proton reduction into various products
Reaction potentials of CO2 and proton | E |
---|---|
C(Ⅳ)O2 + e? →C(Ⅲ)O2? ? | -1.90 |
C(Ⅳ)O2 + 2(H+ + e?) → HC(Ⅱ)OOH | -0.61 |
C(Ⅳ)O2 + 2(H+ + e?) → CO(Ⅱ) + H2O | -0.53 |
C(Ⅳ)O2 + 4(H+ + e?) → HC(0)HO + H2O | -0.48 |
C(Ⅳ)O2 + 6(H+ + e?) → C(-Ⅱ)H3OH + H2O | -0.38 |
C(Ⅳ)O2 + 8(H+ + e?)→ C(-Ⅳ)H4 + 2H2O | -0.24 |
2(H+ + e?) → H2 | -0.42 |
1 | Davis Steven J., Caldeira K., Matthews H. D., Science, 2010, 329(5997), 1330—1333 |
2 | Aresta M., Dibenedetto A., Angelini A., Chem. Rev., 2014, 114(3), 1709—1742 |
3 | Sakakura T., Choi J. C., Yasuda H., Chem. Rev., 2007, 107(6), 2365—2387 |
4 | He X., Qiu L. Q., Wang W. J., Chen K. H., He L. N., Green Chem., 2020, 22(21), 7301—7320 |
5 | Xie S., Zhang Q., Liu G., Wang Y., Chem. Commun., 2016, 52(1), 35—59 |
6 | He L. N., Carbon Dioxide Chemistry, Science Press, Beijing, 2013 |
7 | He L. N., Wang J. Q., Wang J. L., Pure Appl. Chem., 2009, 81(11), 2069—2080 |
8 | He M., Sun Y., Han B., Angew. Chem. Int. Ed., 2013, 52(37), 9620—9633 |
9 | Zou L., Sa R., Lv H., Zhong H., Wang R., ChemSusChem, 2020, 13(23), 6124—6140 |
10 | Yuan L., Qi M. Y., Tang Z. R., Xu Y. J., Angew. Chem. Int. Ed., 2021, 60(39), 21150—21172 |
11 | Yang Z. Z., He L. N., Gao J., Liu A. H., Yu B., Energy Environ. Sci., 2012, 5(5), 6602—6639 |
12 | Yao X. Y., Zhang Y., Gao S., He L. N., J. Huazhong Norm.Univ., Nat. Sci., 2019, 53(6), 834—846 |
姚向阳, 张彦, 高嵩, 何良年. 华中师范大学学报, 2019, 53(6), 834—846 | |
13 | Chen K. H., Li H. R., He L. N., Chinese J. Org. Chem., 2020, 40(8), 2195—2207 |
陈凯宏, 李红茹, 何良年. 有机化学, 2020, 40(8), 2195—2207 | |
14 | Liu X. F., Li X. Y., Qiao C., Fu H. C., He L. N., Angew. Chem. Int. Ed., 2017, 56(26), 7425—7429 |
15 | Hoffmann M. R., Moss J. A., Baum M. M., Dalton Trans., 2011, 40(19), 5151—5158 |
16 | Gao C., Wang J., Xu H., Xiong Y., Chem. Soc. Rev., 2017, 46(10), 2799—2823 |
17 | Wang F., ChemSusChem, 2017, 10(22), 4393—4402 |
18 | Wang H., Gao Y., Zhou C., Li G., J. Am. Chem. Soc., 2020, 142(18), 8122—8129 |
19 | Miller Tarryn E., Beneyton T., Schwander T., Diehl C., Girault M., McLean R., Chotel T., Claus P., Cortina Niña S., Baret J. C., Erb Tobias J., Science, 2020, 368(6491), 649—654 |
20 | Gaut Nathaniel J., Adamala Katarzyna P., Science, 2020, 368(6491), 587—588 |
21 | Cook T. R., Dogutan D. K., Reece S. Y., Surendranath Y., Teets T. S., Nocera D. G., Chem. Rev., 2010, 110(11), 6474—6502 |
22 | Wei L., Yu C., Zhang Q., Liu H., Wang Y., J. Mater. Chem. A, 2018, 6(45), 22411—22436 |
23 | Kuramochi Y., Ishitani O., Ishida H., Coord. Chem. Rev., 2018, 373, 333—356 |
24 | Dhanasekaran T., Grodkowski J., Neta P., Hambright P., Fujita E., J. Phys. Chem. A, 1999, 103(38), 7742—7748 |
25 | Bonin J., Robert M., Routier M., J. Am. Chem. Soc., 2014, 136(48), 16768—16771 |
26 | Rao H., Schmidt L. C., Bonin J., Robert M., Nature, 2017, 548(7665), 74—77 |
27 | Rao H., Lim C. H., Bonin J., Miyake G. M., Robert M., J. Am. Chem. Soc., 2018, 140(51), 17830—17834 |
28 | Call A., Cibian M., Yamamoto K., Nakazono T., Yamauchi K., Sakai K., ACS Catal., 2019, 9(6), 4867—4874 |
29 | Zhang X., Cibian M., Call A., Yamauchi K., Sakai K., ACS Catal., 2019, 9(12), 11263—11273 |
30 | Huang Y., Xin Z., He L. N., Sci. Bull., 2021, 66(9), 865—867 |
31 | Yao X., Chen K., Qiu L. Q., Yang Z. W., He L. N., Chem. Mater., 2021, 33(22), 8863—8872 |
32 | Li L., Li P. F., Wang B., Chem. J. Chinese Universities, 2020, 41(9), 1917—1932 |
李丽, 李鹏飞, 王博. 高等学校化学学报, 2020, 41(9), 1917—1932 | |
33 | Lu M., Liu J., Li Q., Zhang M., Liu M., Wang J. L., Yuan D. Q., Lan Y. Q., Angew. Chem. Int. Ed., 2019, 58(36), 12392—12397 |
34 | Lv H., Sa R., Li P., Yuan D., Wang X., Wang R., Sci. China Chem., 2020, 63(9), 1289—1294 |
35 | He P. S., Zhou J., Zhou A. W., Dou Y. B., Li J. R., Chem. J. Chinese Universities, 2019, 40(5), 855—866 |
何鹏琛, 周健, 周阿武, 豆义波, 李建荣. 高等学校化学学报, 2019, 40(5), 855—866 | |
36 | Mondloch J. E., Katz M. J., Planas N., Semrouni D., Gagliardi L., Hupp J. T., Farha O. K., Chem. Commun., 2014, 50(64), 8944—8946 |
37 | Xu H. Q., Hu J., Wang D., Li Z., Zhang Q., Luo Y., Yu S. H., Jiang H. L., J. Am. Chem. Soc., 2015, 137(42), 13440—13443 |
38 | Wu L. Y., Mu Y. F., Guo X. X., Zhang W., Zhang Z. M., Zhang M., Lu T. B., Angew. Chem. Int. Ed., 2019, 58(28), 9491—9495 |
39 | Huang Q., Liu J., Feng L., Wang Q., Guan W., Dong L. Z., Zhang L., Yan L. K., Lan Y. Q., Zhou H. C., Natl. Sci. Rev., 2020, 7(1), 53—63 |
40 | Fang Z. B., Liu T. T., Liu J., Jin S., Wu X. P., Gong X. Q., Wang K., Yin Q., Liu T. F., Cao R., Zhou H. C., J. Am. Chem. Soc., 2020, 142(28), 12515—12523 |
41 | Gholamkhass B., Mametsuka H., Koike K., Tanabe T., Furue M., Ishitani O., Inorg. Chem., 2005, 44(7), 2326—2336 |
42 | Takeda H., Cometto C., Ishitani O., Robert M., ACS Catal., 2016, 7(1), 70—88 |
43 | Yamazaki Y., Ohkubo K., Saito D., Yatsu T., Tamaki Y., Tanaka S., Koike K., Onda K., Ishitani O., Inorg. Chem., 2019, 58(17), 11480—11492 |
44 | Tamaki Y., Ishitani O., ACS Catal., 2017, 7(5), 3394—3409 |
45 | Cancelliere A. M., Puntoriero F., Serroni S., Campagna S., Tamaki Y., Saito D., Ishitani O., Chem. Sci., 2020, 11(6), 1556—1563 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[3] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[4] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[5] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[6] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[7] | HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220222. |
[8] | SONG Dewen, WANG Mingwang, WANG Yani, JIAO Zhenmei, NING Hui, WU Mingbo. Progress of CO2 Electroreduction to Oxalic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220248. |
[9] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[10] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[11] | GUO Zhiqiang, YANG Boru, XI Chanjuan. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220199. |
[12] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[13] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[14] | ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2 [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255. |
[15] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||