Chem. J. Chinese Universities ›› 2014, Vol. 35 ›› Issue (3): 564.doi: 10.7503/cjcu20131115
• Physical Chemistry • Previous Articles Next Articles
MIN Chungang1,*(), LENG Yan2, YANG Xikun1, HUANG Shaojun1, REN Aimin3,*(
)
Received:
2013-11-18
Online:
2014-03-10
Published:
2019-08-01
Contact:
MIN Chungang,REN Aimin
E-mail:minchungang@163.com;aimin_ren@yahoo.com
Supported by:
CLC Number:
TrendMD:
MIN Chungang, LENG Yan, YANG Xikun, HUANG Shaojun, REN Aimin. Electronic Structures and Photophysical Properties of Firefly Oxyluciferin and Derivatives†[J]. Chem. J. Chinese Universities, 2014, 35(3): 564.
Parameter | ENO | Expt.[ | ENC | ENF | KET | KEC | KEF |
---|---|---|---|---|---|---|---|
r1 | 0.135 | 0.134 | 0.134 | 0.133 | 0.121 | 0.121 | 0.121 |
r2 | 0.138 | 0.134 | 0.138 | 0.137 | 0.154 | 0.154 | 0.154 |
r3 | 0.172 | 0.169 | 0.173 | 0.172 | 0.181 | 0.181 | 0.181 |
r4 | 0.174 | 0.170 | 0.174 | 0.174 | 0.176 | 0.176 | 0.176 |
r5 | 0.145 | 0.144 | 0.145 | 0.145 | 0.145 | 0.145 | 0.145 |
r6 | 0.130 | 0.129 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 |
r7 | 0.137 | 0.141 | 0.137 | 0.137 | 0.137 | 0.137 | 0.137 |
r8 | 0.140 | 0.142 | 0.140 | 0.140 | 0.140 | 0.140 | 0.141 |
r9 | 0.139 | 0.137 | 0.139 | 0.139 | 0.138 | 0.138 | 0.138 |
r10 | 0.141 | 0.140 | 0.141 | 0.140 | 0.141 | 0.141 | 0.140 |
r11 | 0.136 | 0.136 | 0.136 | 0.135 | 0.136 | 0.135 | 0.135 |
r12 | 0.139 | 0.137 | 0.140 | 0.138 | 0.139 | 0.140 | 0.138 |
r13 | 0.139 | 0.139 | 0.139 | 0.140 | 0.139 | 0.139 | 0.140 |
r14 | 0.142 | 0.138 | 0.142 | 0.142 | 0.142 | 0.142 | 0.142 |
r15 | 0.174 | 0.173 | 0.174 | 0.174 | 0.174 | 0.174 | 0.174 |
r16 | 0.177 | 0.173 | 0.177 | 0.176 | 0.176 | 0.176 | 0.176 |
r17 | 0.131 | 0.133 | 0.131 | 0.131 | 0.129 | 0.129 | 0.129 |
r18 | 0.136 | 0.136 | 0.136 | 0.135 | 0.140 | 0.140 | 0.140 |
∠S—C—C—S | 179.95 | 179.44 | 179.99 | 179.99 | 179.99 | 179.98 | 179.97 |
Table 1 Selected important bond lengths(nm), and dihedral angels(°) of studied compound obtaind by MPW3PBE/6-31+G(d) method
Parameter | ENO | Expt.[ | ENC | ENF | KET | KEC | KEF |
---|---|---|---|---|---|---|---|
r1 | 0.135 | 0.134 | 0.134 | 0.133 | 0.121 | 0.121 | 0.121 |
r2 | 0.138 | 0.134 | 0.138 | 0.137 | 0.154 | 0.154 | 0.154 |
r3 | 0.172 | 0.169 | 0.173 | 0.172 | 0.181 | 0.181 | 0.181 |
r4 | 0.174 | 0.170 | 0.174 | 0.174 | 0.176 | 0.176 | 0.176 |
r5 | 0.145 | 0.144 | 0.145 | 0.145 | 0.145 | 0.145 | 0.145 |
r6 | 0.130 | 0.129 | 0.130 | 0.130 | 0.130 | 0.130 | 0.130 |
r7 | 0.137 | 0.141 | 0.137 | 0.137 | 0.137 | 0.137 | 0.137 |
r8 | 0.140 | 0.142 | 0.140 | 0.140 | 0.140 | 0.140 | 0.141 |
r9 | 0.139 | 0.137 | 0.139 | 0.139 | 0.138 | 0.138 | 0.138 |
r10 | 0.141 | 0.140 | 0.141 | 0.140 | 0.141 | 0.141 | 0.140 |
r11 | 0.136 | 0.136 | 0.136 | 0.135 | 0.136 | 0.135 | 0.135 |
r12 | 0.139 | 0.137 | 0.140 | 0.138 | 0.139 | 0.140 | 0.138 |
r13 | 0.139 | 0.139 | 0.139 | 0.140 | 0.139 | 0.139 | 0.140 |
r14 | 0.142 | 0.138 | 0.142 | 0.142 | 0.142 | 0.142 | 0.142 |
r15 | 0.174 | 0.173 | 0.174 | 0.174 | 0.174 | 0.174 | 0.174 |
r16 | 0.177 | 0.173 | 0.177 | 0.176 | 0.176 | 0.176 | 0.176 |
r17 | 0.131 | 0.133 | 0.131 | 0.131 | 0.129 | 0.129 | 0.129 |
r18 | 0.136 | 0.136 | 0.136 | 0.135 | 0.140 | 0.140 | 0.140 |
∠S—C—C—S | 179.95 | 179.44 | 179.99 | 179.99 | 179.99 | 179.98 | 179.97 |
Compound | EHOMO/eV | ELUMO/eV | ΔEH-L/eV | Compound | EHOMO/eV | ELUMO/eV | ΔEH-L/eV |
---|---|---|---|---|---|---|---|
ENO | -5.99 | -2.30 | 3.69 | KET | -6.73 | -3.07 | 3.66 |
ENC | -5.88 | -2.19 | 3.69 | KEC | -6.58 | -3.03 | 3.55 |
ENF | -6.63 | -2.72 | 3.91 | KEF | -7.26 | -3.26 | 4.00 |
Table 2 HOMO, LUMO energies of the studied compounds
Compound | EHOMO/eV | ELUMO/eV | ΔEH-L/eV | Compound | EHOMO/eV | ELUMO/eV | ΔEH-L/eV |
---|---|---|---|---|---|---|---|
ENO | -5.99 | -2.30 | 3.69 | KET | -6.73 | -3.07 | 3.66 |
ENC | -5.88 | -2.19 | 3.69 | KEC | -6.58 | -3.03 | 3.55 |
ENF | -6.63 | -2.72 | 3.91 | KEF | -7.26 | -3.26 | 4.00 |
Compound | Benzothiazole ring | Thiazoline ring | R group | |||
---|---|---|---|---|---|---|
HOMO | LUMO | HOMO | LUMO | HOMO | LUMO | |
ENO | 47.40 | 48.55 | 37.77 | 50.24 | 14.84 | 1.21 |
ENC | 46.88 | 50.55 | 34.38 | 47.79 | 18.74 | 1.66 |
ENF | 52.05 | 48.31 | 40.29 | 50.97 | 7.67 | 0.72 |
KET | 74.44 | 51.19 | 6.81 | 41.19 | 8.75 | 7.62 |
KEC | 69.87 | 51.09 | 5.85 | 40.98 | 24.28 | 7.93 |
KEF | 78.83 | 51.94 | 13.34 | 41.04 | 7.83 | 7.02 |
Table 3 Contribution of electron density(%) for the studied compounds
Compound | Benzothiazole ring | Thiazoline ring | R group | |||
---|---|---|---|---|---|---|
HOMO | LUMO | HOMO | LUMO | HOMO | LUMO | |
ENO | 47.40 | 48.55 | 37.77 | 50.24 | 14.84 | 1.21 |
ENC | 46.88 | 50.55 | 34.38 | 47.79 | 18.74 | 1.66 |
ENF | 52.05 | 48.31 | 40.29 | 50.97 | 7.67 | 0.72 |
KET | 74.44 | 51.19 | 6.81 | 41.19 | 8.75 | 7.62 |
KEC | 69.87 | 51.09 | 5.85 | 40.98 | 24.28 | 7.93 |
KEF | 78.83 | 51.94 | 13.34 | 41.04 | 7.83 | 7.02 |
Compound | VIP/eV | AIP/eV | HEP/eV | VEA/eV | AEA/eV | EEP/eV | λhole/eV | λelectron/eV |
---|---|---|---|---|---|---|---|---|
ENO | 7.50 | 7.31 | 7.12 | 0.77 | 0.98 | 1.18 | 0.38 | 0.41 |
ENC | 7.32 | 7.13 | 6.93 | 0.71 | 0.92 | 1.12 | 0.39 | 0.41 |
ENF | 8.19 | 7.99 | 7.79 | 1.15 | 1.36 | 1.56 | 0.40 | 0.41 |
KET | 8.36 | 8.20 | 8.02 | 1.55 | 1.79 | 2.02 | 0.34 | 0.47 |
KEC | 8.16 | 7.99 | 7.81 | 1.53 | 1.77 | 2.00 | 0.35 | 0.47 |
KEF | 8.84 | 8.72 | 8.58 | 1.72 | 1.97 | 2.21 | 0.26 | 0.49 |
Table 4 Ionization potentials, electron affinities, extraction potentials, and reorganization energies for studied compounds
Compound | VIP/eV | AIP/eV | HEP/eV | VEA/eV | AEA/eV | EEP/eV | λhole/eV | λelectron/eV |
---|---|---|---|---|---|---|---|---|
ENO | 7.50 | 7.31 | 7.12 | 0.77 | 0.98 | 1.18 | 0.38 | 0.41 |
ENC | 7.32 | 7.13 | 6.93 | 0.71 | 0.92 | 1.12 | 0.39 | 0.41 |
ENF | 8.19 | 7.99 | 7.79 | 1.15 | 1.36 | 1.56 | 0.40 | 0.41 |
KET | 8.36 | 8.20 | 8.02 | 1.55 | 1.79 | 2.02 | 0.34 | 0.47 |
KEC | 8.16 | 7.99 | 7.81 | 1.53 | 1.77 | 2.00 | 0.35 | 0.47 |
KEF | 8.84 | 8.72 | 8.58 | 1.72 | 1.97 | 2.21 | 0.26 | 0.49 |
Compound | Electronic transition | λ/nm | f | Main configuration |
---|---|---|---|---|
ENO | S0→S1 | 361.57 | 0.5559 | HOMO→LUMO(0.70294) |
S0→S2 | 318.39 | 0.0322 | HOMO-2→LUMO(0.12154) | |
HOMO-1→LUMO(0.67600) | ||||
HOMO→LUMO+1(0.14413) | ||||
S0→S3 | 291.33 | 0.0163 | HOMO-2→LUMO(0.66786) | |
HOMO-1→LUMO(-0.13590) | ||||
HOMO→LUMO+5(0.11411) | ||||
ENC | S0→S1 | 364.83 | 0.5874 | HOMO→LUMO(0.70256) |
S0→S2 | 322.28 | 0.0395 | HOMO-2→LUMO(0.12498) | |
HOMO-1→LUMO(0.67879) | ||||
HOMO→LUMO+1(0.12613) | ||||
S0→S3 | 295.56 | 0.0346 | HOMO-2→LUMO(0.66959) | |
HOMO-1→LUMO(-0.13784) | ||||
HOMO→LUMO+4(-0.11239) | ||||
ENF | S0→S1 | 340.67 | 0.5714 | HOMO→LUMO(0.70227) |
S0→S2 | 316.56 | 0.0231 | HOMO-1→LUMO(0.68960) | |
HOMO→LUMO+1(0.12855) | ||||
S0→S3 | 269.18 | 0.0003 | HOMO-3→LUMO(0.70361) | |
KET | S0→S1 | 370.89(370)[ | 0.2969 | HOMO-1→LUMO(0.20803) |
HOMO→LUMO(0.67006) | ||||
S0→S2 | 363.82 | 0.0002 | HOMO-3→LUMO(0.69391) | |
HOMO-3→LUMO+2(0.10912) | ||||
S0→S3 | 335.72 | 0.2697 | HOMO-2→LUMO(-0.19217) | |
Compound | Electronic transition | λ/nm | f | Main configuration |
KET | HOMO-1→LUMO(0.63990) | |||
HOMO→LUMO(-0.20305) | ||||
KEC | S0→S1 | 383.79 | 0.3213 | HOMO-1→LUMO(0.17180) |
HOMO→LUMO(0.68112) | ||||
S0→S2 | 363.34 | 0.0002 | HOMO-3→LUMO(0.69384) | |
HOMO-3→LUMO+2(0.10734) | ||||
S0→S3 | 338.32 | 0.2854 | HOMO-2→LUMO(-0.19597) | |
HOMO-1→LUMO(0.64941) | ||||
HOMO→LUMO(-0.16626) | ||||
KEF | S0→S1 | 367.40 | 0.0002 | HOMO-3→LUMO(0.69379) |
HOMO-3→LUMO+2(0.10819) | ||||
S0→S2 | 349.04 | 0.0552 | HOMO-1→LUMO(-0.39080) | |
HOMO→LUMO(0.58091) | ||||
S0→S3 | 330.37 | 0.1541 | HOMO-2→LUMO(0.67537) | |
HOMO-1→LUMO(-0.12235) | ||||
HOMO→LUMO(-0.12807) |
Table 5 Absorption spectra obtained by TD-DFT//TD MPW3PBE/6-31+G(d) method for the studied molecules based on the optimized geometries
Compound | Electronic transition | λ/nm | f | Main configuration |
---|---|---|---|---|
ENO | S0→S1 | 361.57 | 0.5559 | HOMO→LUMO(0.70294) |
S0→S2 | 318.39 | 0.0322 | HOMO-2→LUMO(0.12154) | |
HOMO-1→LUMO(0.67600) | ||||
HOMO→LUMO+1(0.14413) | ||||
S0→S3 | 291.33 | 0.0163 | HOMO-2→LUMO(0.66786) | |
HOMO-1→LUMO(-0.13590) | ||||
HOMO→LUMO+5(0.11411) | ||||
ENC | S0→S1 | 364.83 | 0.5874 | HOMO→LUMO(0.70256) |
S0→S2 | 322.28 | 0.0395 | HOMO-2→LUMO(0.12498) | |
HOMO-1→LUMO(0.67879) | ||||
HOMO→LUMO+1(0.12613) | ||||
S0→S3 | 295.56 | 0.0346 | HOMO-2→LUMO(0.66959) | |
HOMO-1→LUMO(-0.13784) | ||||
HOMO→LUMO+4(-0.11239) | ||||
ENF | S0→S1 | 340.67 | 0.5714 | HOMO→LUMO(0.70227) |
S0→S2 | 316.56 | 0.0231 | HOMO-1→LUMO(0.68960) | |
HOMO→LUMO+1(0.12855) | ||||
S0→S3 | 269.18 | 0.0003 | HOMO-3→LUMO(0.70361) | |
KET | S0→S1 | 370.89(370)[ | 0.2969 | HOMO-1→LUMO(0.20803) |
HOMO→LUMO(0.67006) | ||||
S0→S2 | 363.82 | 0.0002 | HOMO-3→LUMO(0.69391) | |
HOMO-3→LUMO+2(0.10912) | ||||
S0→S3 | 335.72 | 0.2697 | HOMO-2→LUMO(-0.19217) | |
Compound | Electronic transition | λ/nm | f | Main configuration |
KET | HOMO-1→LUMO(0.63990) | |||
HOMO→LUMO(-0.20305) | ||||
KEC | S0→S1 | 383.79 | 0.3213 | HOMO-1→LUMO(0.17180) |
HOMO→LUMO(0.68112) | ||||
S0→S2 | 363.34 | 0.0002 | HOMO-3→LUMO(0.69384) | |
HOMO-3→LUMO+2(0.10734) | ||||
S0→S3 | 338.32 | 0.2854 | HOMO-2→LUMO(-0.19597) | |
HOMO-1→LUMO(0.64941) | ||||
HOMO→LUMO(-0.16626) | ||||
KEF | S0→S1 | 367.40 | 0.0002 | HOMO-3→LUMO(0.69379) |
HOMO-3→LUMO+2(0.10819) | ||||
S0→S2 | 349.04 | 0.0552 | HOMO-1→LUMO(-0.39080) | |
HOMO→LUMO(0.58091) | ||||
S0→S3 | 330.37 | 0.1541 | HOMO-2→LUMO(0.67537) | |
HOMO-1→LUMO(-0.12235) | ||||
HOMO→LUMO(-0.12807) |
Compound | λ/nm | f | Main configuration | Compound | λ/nm | f | Main configuration |
---|---|---|---|---|---|---|---|
ENO | 416.31 | 0.5585 | HOMO→LUMO(0.70606) | KET | HOMO→LUMO(-0.66839) | ||
ENC | 418.38 | 0.6054 | HOMO→LUMO(0.70525) | KEC | 423.11 | 0.2365 | HOMO-1→LUMO(0.18037) |
ENF | 394.76 | 0.5769 | HOMO→LUMO(0.70585) | HOMO→LUMO(0.67819) | |||
KET | 409.68 | 0.2044 | HOMO-1→LUMO(0.20531) | KEF | 580.63 | 0.0001 | HOMO→LUMO(-0.70129) |
Table 6 Emission wavelength, oscillator strength(f), dominant transition orbitals, coefficient calculated for the studied compounds
Compound | λ/nm | f | Main configuration | Compound | λ/nm | f | Main configuration |
---|---|---|---|---|---|---|---|
ENO | 416.31 | 0.5585 | HOMO→LUMO(0.70606) | KET | HOMO→LUMO(-0.66839) | ||
ENC | 418.38 | 0.6054 | HOMO→LUMO(0.70525) | KEC | 423.11 | 0.2365 | HOMO-1→LUMO(0.18037) |
ENF | 394.76 | 0.5769 | HOMO→LUMO(0.70585) | HOMO→LUMO(0.67819) | |||
KET | 409.68 | 0.2044 | HOMO-1→LUMO(0.20531) | KEF | 580.63 | 0.0001 | HOMO→LUMO(-0.70129) |
[1] | Peumans P., Yakimov A., Forrest S. R., J. Appl. Phys., 2003, 93(7), 3693—3723 |
[2] | Dimitrakopoulos C. D., Malenfant P. R. L., Adv. Mater., 2002, 14(2), 99—117 |
[3] | Wong W. Y., He Z., So S. K., Tong K. L., Lin Z., Organometallics,2005, 24(16), 4079—4082 |
[4] | He Z., Wong W. Y., Yu X., Kwork H. S., Lin Z., Inorg. Chem., 2006, 45(26), 10922—10937 |
[5] | Contag C. H., Contag P. R., Mullins J. I., Spilman S. D., Stevenson D. K., Benaron D. A., Mol. Microbiol., 1995, 18(4), 593—603 |
[6] | Kricka L. J., Methods Enzymol., 2000, 305, 333—345 |
[7] | Seliger H. H., McElroy W. D., Arch. Biochem. Biophys., 1960, 88, 136—141 |
[8] | Seliger H. H., McElroy W. D., Proc. Natl. Acad. Sci. USA,1964, 52(1), 75—81 |
[9] | Ando Y., Niwa K., Yamada N., Enomoto T., Irie T., Kubota H., Ohmiya Y., Akiyama H., Nat. Photonics., 2008, 2(1), 44—47 |
[10] | White E. H., Rapaport E., Seliger H. H., Hopkins T. A., Bioorg. Chem., 1971, 1, 92—122 |
[11] | Branchini B. R., Murtiashaw M. H., Magyar R. A., Portier N. C., Ruggiero M. C., Stroh J. G., J. Am. Chem. Soc., 2002, 124(10), 2112—2113 |
[12] | Hirano T., Hasumi Y., Ohtsuka K., Maki S., Niwa H., Yamaji M., Hashizume D., J. Am. Chem. Soc., 2009, 131(6), 2385—2396 |
[13] | Liu Y. J., DeVico L., Lindh R., J. Photochem. Photobiol. A,2008, 194(2/3), 261—267 |
[14] | Li Z. S., Zou L. Y., Ren A. M., Feng J. K., Chem. J. Chinese Universities,2012, 33(12), 2757—2764 |
(李作盛, 邹陆一, 任爱民, 封继康. 高等学校化学学报, 2012, 33(12), 2757—2764) | |
[15] | Naumov P., Ozawa Y., Ohkubo K., Fukuzumi S., J. Am. Chem. Soc., 2009, 131(32), 11590—11605 |
[16] | Min C. G., Leng Y., Yang X. K., Ren A. M., Cui X. Y., Xu M. L., Wang S. H., Chem. Res. Chinese Universities,2013, 29(5), 982—985 |
[17] | Frisch M.J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A. 02, Gaussian Inc., Wallingford CT, 2009 |
[18] | Li X., Wang X., Gao J., Yu X., Wang H., Chem. Phys., 2006, 326(2/3), 390—394 |
[19] | Liu X. D., Ren A. M., Feng J. K., Yang L., Xu H., Shi M. M., Sun C. C., Chem. J. Chinese Universities,2006, 27(11), 2156—2159 |
(刘晓冬, 任爱民, 封继康, 杨丽, 许海, 施敏敏, 孙家锺. 高等学校化学学报, 2006, 27(11), 2156—2159) | |
[20] | Nelsen S. F., Blomgren F. J., J. Org. Chem., 2001, 66(20), 6551—6559 |
[21] | Hutchison G. R., Ratner M. A., Marks T. J., J. Am. Chem. Soc., 2005, 127(7), 2339—2350 |
[22] | Gandelman O. A., Brovko L. Y., Ugarova N. N., Chikishev A. Y., Shkurimov A. P., J. Photochem. Photobiol. B: Biol., 1993, 19(3), 187—191 |
[1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
[4] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[5] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[6] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[7] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[8] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[9] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
[10] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[11] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
[12] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[13] | ZHENG Ruoxin, ZHANG Igor Ying, XU Xin. Development and Benchmark of Lower Scaling Doubly Hybrid Density Functional XYG3 [J]. Chem. J. Chinese Universities, 2021, 42(7): 2210. |
[14] | YING Fuming, JI Chenru, SU Peifeng, WU Wei. λ-DFCAS: A Hybrid Density Functional Complete Active Space Self Consistent Field Method [J]. Chem. J. Chinese Universities, 2021, 42(7): 2218. |
[15] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||