Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (5): 20220043.doi: 10.7503/cjcu20220043
• Review • Previous Articles Next Articles
ZHUANG Jiahao, WANG Dingsheng()
Received:
2022-01-18
Online:
2022-05-10
Published:
2022-02-22
Contact:
WANG Dingsheng
E-mail:wangdingsheng@mail.tsinghua.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHUANG Jiahao, WANG Dingsheng. Current Advances and Future Challenges of Single-atom Catalysis[J]. Chem. J. Chinese Universities, 2022, 43(5): 20220043.
1 | Dresselhaus M. S., Thomas I. L., Nature, 2001, 414(6861), 332—337 |
2 | Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3(8), 634—641 |
3 | Qin R., Liu P., Fu G., Zheng N., Small Methods, 2018, 2(1), 1700286 |
4 | Lang R., Du X., Huang Y., Jiang X., Zhang Q., Guo Y., Liu K., Qiao B., Wang A., Zhang T., Chem. Rev., 2020, 120(21), 11986—12043 |
5 | Jing H., Zhu P., Zheng X., Zhang Z., Wang D., Li Y., Adv. Powder Mater., 2022, 1(1), 100013 |
6 | Li X., Huang Y., Liu B., Chem, 2019, 5(11), 2733—2735 |
7 | Ye R., Hurlburt T. J., Sabyrov K., Alayoglu S., Somorjai G. A., Proc. Natl. Acad. Sci. USA, 2016, 113(19), 5159—5166 |
8 | Moret S., Dyson P. J., Laurenczy G., Nat. Commun., 2014, 5, 4017 |
9 | Sreedhala S., Sudheeshkumar V., Vinod C. P., Nanoscale, 2014, 6(13), 7496—7502 |
10 | Zhuang J., Liu X., Ji Y., Gu F., Xu J., Han Y. f., Xu G., Zhong Z., Su F., J. Mater. Chem. A, 2020, 8(42), 22143—22154 |
11 | Li H., Li L., Li Y., Nanotechnol. Rev., 2013, 2(5), 515—528 |
12 | Corma A., Concepción P., Boronat M., Sabater M. J., Navas J., Yacaman M. J., Larios E., Posadas A., López⁃Quintela M. A., Buceta D., Mendoza E., Guilera G., Mayoral A., Nat. Chem., 2013, 5(9), 775—781 |
13 | Li Z., Wang D., Wu Y., Li Y., Natl. Sci. Rev., 2018, 5(5), 673—689 |
14 | Therrien A. J., Hensley A. J. R., Marcinkowski M. D., Zhang R., Lucci F. R., Coughlin B., Schilling A. C., Mcewen J. S., Sykes E. C. H., Nat. Catal., 2018, 1(3), 192—198 |
15 | Li Y., Hao J., Song H., Zhang F., Bai X., Meng X., Zhang H., Wang S., Hu Y., Ye J., Nat. Commun., 2019, 10(1), 2359 |
16 | Li Z., Chen Y., Ji S., Tang Y., Chen W., Li A., Zhao J., Xiong Y., Wu Y., Gong Y., Yao T., Liu W., Zheng L., Dong J., Wang Y., Zhuang Z., Xing W., He C. T., Peng C., Cheong W. C., Li Q., Zhang M., Chen Z., Fu N., Gao X., Zhu W., Wan J., Zhang J., Gu L., Wei S., Hu P., Luo J., Li J., Chen C., Peng Q., Duan X., Huang Y., Chen X. M., Wang D., Li Y., Nat. Chem., 2020, 12(8), 764—772 |
17 | Wang Y., Zheng X., Wang D., Nano Res., 2022, 15(3), 1730—1752 |
18 | Zheng X., Li P., Dou S., Sun W., Pan H., Wang D., Li Y., Energy Environ. Sci., 2021, 14(5), 2809—2858 |
19 | Chen T. F., He L. Z., Yuan Z. W., Chem. J. Chinese Universities, 2020, 41(12), 2690—2709 |
陈填烽, 贺利贞, 袁中文. 高等学校化学学报, 2020, 41(12), 2690—2709 | |
20 | Ji S., Qu Y., Wang T., Chen Y., Wang G., Li X., Dong J., Chen Q., Zhang W., Zhang Z., Liang S., Yu R., Wang Y., Wang D., Li Y., Angew. Chem. Int. Ed., 2020, 59(26), 10651—10657 |
21 | Xiong Y., Sun W., Han Y., Xin P., Zheng X., Yan W., Dong J., Zhang J., Wang D., Li Y., Nano Res., 2021, 14,2418—2423 |
22 | Zhang N., Ye C., Yan H., Li L., He H., Wang D., Li Y., Nano Res., 2020, 13(12), 3165—3182 |
23 | Yang X. F., Wang A., Qiao B., Li J., Liu J., Zhang T., Acc. Chem. Res., 2013, 46(8), 1740—1748 |
24 | Li X., Bi W., Zhang L., Tao S., Chu W., Zhang Q., Luo Y., Wu C., Xie Y., Adv. Mater., 2016, 28(12), 2427—2431 |
25 | Liu L., Meira D. M., Arenal R., Concepcion P., Puga A. V., Corma A., ACS Catal., 2019, 9(12), 10626—10639 |
26 | Zhuang Z., Kang Q., Wang D., Li Y., Nano Res., 2020, 13(7), 1856—1866 |
27 | Lang R., Li T., Matsumura D., Miao S., Ren Y., Cui Y. T., Tan Y., Qiao B., Li L., Wang A., Wang X., Zhang T., Angew. Chem. Int. Ed., 2016, 55(52), 16054—16058 |
28 | Xu G., Wei H., Ren Y., Yin J., Wang A., Zhang T., Green Chem., 2016, 18(5), 1332—1338 |
29 | Chen Y., Wang P., Hao H., Hong J., Li H., Ji S., Li A., Gao R., Dong J., Han X., Liang M., Wang D., Li Y., J. Am. Chem. Soc., 2021, 143(44), 18643—18651 |
30 | Wang K., Wang X., Liang X., ChemCatChem, 2020, 13(1), 28—58 |
31 | Wu J., Xiong L., Zhao B., Liu M., Huang L., Small Methods, 2019, 4(2), 1900540 |
32 | Ding K., Gulec A., Johnson A. M., Schweitzer N. M., Stucky G. D., Marks L. D., Stair P. C., Science, 2015, 350(6257), 189—192 |
33 | Liu L., Meira D. M., Arenal R., Concepcion P., Puga A. V., Corma A., ACS Catal., 2019, 9(12), 10626—10639 |
34 | Hu C. W., Wang S. S., Xiong J. Y., Xu Y. Q., Chem. J. Chinese Universities, 2020, 41(6), 1262—1268 |
胡长文, 王姗姗, 熊俊宇, 许颜清. 高等学校化学学报, 2020, 41(6), 1262—1268 | |
35 | Chen B., Zhong X., Zhou G., Zhao N., Cheng H. M., Adv. Mater., 2022, 34(5), 2105812 |
36 | Chen M., Wan S., Zhong L., Liu D., Yang H., Li C., Huang Z., Liu C., Chen J., Pan H., Li D. S., Li S., Yan Q., Liu B., Angew. Chem. Int. Ed., 2021, 60, 2—7 |
37 | Cui T., Ma L., Wang S., Ye C., Liang X., Zhang Z., Meng G., Zheng L., Hu H. S., Zhang J., Duan H., Wang D., Li Y., J. Am. Chem. Soc., 2021, 143(25), 9429—9439 |
38 | Chen S., Li W. H., Jiang W., Yang J., Zhu J., Wang L., Ou H., Zhuang Z., Chen M., Sun X., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60, 2—9 |
39 | Cui T., Wang Y. P., Ye T., Wu J., Chen Z., Li J., Lei Y., Wang D., Li Y., Angew. Chem. Int. Ed., 2022, 61(12), e202115219 |
40 | Chen Y., Gao R., Ji S., Li H., Tang K., Jiang P., Hu H., Zhang Z., Hao H., Qu Q., Liang X., Chen W., Dong J., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(6), 3212—3221 |
41 | Liu Y., Wang B., Fu Q., Liu W., Wang Y., Gu L., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(41), 22522—22528 |
42 | Zhang N., Zhang X., Kang Y., Ye C., Jin R., Yan H., Lin R., Yang J., Xu Q., Wang Y., Zhang Q., Gu L., Liu L., Song W., Liu J., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(24), 13388—13393 |
43 | Sun X., Tuo Y., Ye C., Chen C., Lu Q., Li G., Jiang P., Chen S., Zhu P., Ma M., Zhang J., Bitter J. H., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(44), 23614—23618 |
44 | Zhang X., Guo J., Guan P., Liu C., Huang H., Xue F., Dong X., Pennycook S. J., Chisholm M. F., Nat. Commun., 2013, 4, 1924 |
45 | Yin P., Yao T., Wu Y., Zheng L., Lin Y., Liu W., Ju H., Zhu J., Hong X., Deng Z., Zhou G., Wei S., Li Y., Angew. Chem. Int. Ed., 2016, 55(36), 10800—10805 |
46 | Wei S., Li A., Liu J. C., Li Z., Chen W., Gong Y., Zhang Q., Cheong W. C., Wang Y., Zheng L., Xiao H., Chen C., Wang D., Peng Q., Gu L., Han X., Li J., Li Y., Nat. Nanotechnol., 2018, 13(9), 856—861 |
47 | Quan Z., Huang W., Liao Y., Liu W., Xu H., Yan N., Qu Z., Fuel, 2019, 241, 451—458 |
48 | Navarro R. M., Pawelec B., Trejo J. M., Mariscal R., Fierro J. L. G., J. Catal., 2000, 189(1), 184—194 |
49 | Huang H. Y., Long R. Q., Yang R. T., Appl. Catal. B, 2001, 33(2), 127—136 |
50 | Rangan M., Yung M. M., Medlin J. W., J. Catal., 2011, 282(2), 249—257 |
51 | Shang H., Zhou X., Dong J., Li A., Zhao X., Liu Q., Lin Y., Pei J., Li Z., Jiang Z., Zhou D., Zheng L., Wang Y., Zhou J., Yang Z., Cao R., Sarangi R., Sun T., Yang X., Zheng X., Yan W., Zhuang Z., Li J., Chen W., Wang D., Zhang J., Li Y., Nat. Commun., 2020, 11(1), 3049 |
52 | Liu Q., Zhong Z., Gu F., Wang X., Lu X., Li H., Xu G., Su F., J. Catal., 2016, 337, 221—232 |
53 | Liu Q., Gu F., Zhong Z., Xu G., Su F., RSC Adv., 2016, 6(25), 20979—20986 |
54 | Jiang Z., Jing M., Feng X., Xiong J., He C., Douthwaite M., Zheng L., Song W., Liu J., Qu Z., Appl. Catal. B, 2020, 278, 119304 |
55 | Jones J., Xiong H., Delariva A. T., Peterson E. J., Pham H., Challa S. R., Qi G., Oh S., Wiebenga M. H., Hernández X. I. P., Wang Y., Datye A. K., Science, 2016, 353(6295), 150—154 |
56 | Wan J., Chen W., Jia C., Zheng L., Dong J., Zheng X., Wang Y., Yan W., Chen C., Peng Q., Wang D., Li Y., Adv. Mater., 2018, 30, 1705369 |
57 | Dvorak F., Farnesi C. M., Tovt A., Tran N. D., Negreiros F. R., Vorokhta M., Skala T., Matolinova I., Myslivecek J., Matolin V., Fabris S., Nat. Commun., 2016, 7, 10801 |
58 | Xue Z., Yan M., Yu X., Tong Y., Zhou H., Zhao Y., Wang Z., Zhang Y., Xiong C., Yang J., Hong X., Luo J., Lin Y., Huang W., Li Y., Wu Y., Chem, 2020, 6, 1—10 |
59 | Lang R., Xi W., Liu J. C., Cui Y. T., Li T., Lee A. F., Chen F., Chen Y., Li L., Li L., Lin J., Miao S., Liu X., Wang A. Q., Wang X., Luo J., Qiao B., Li J., Zhang T., Nat. Commun., 2019, 10(1), 234 |
60 | Miura H., Endo K., Ogawa R., Shishido T., ACS Catal., 2017, 7(3), 1543—1553 |
61 | Zhang Q., Kusada K., Wu D., Yamamoto T., Toriyama T., Matsumura S., Kawaguchi S., Kubota Y., Kitagawa H., Nat. Commun., 2018, 9(1), 510 |
62 | Pei G. X., Liu X. Y., Wang A., Lee A. F., Isaacs M. A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T., ACS Catal., 2015, 5(6), 3717—3725 |
63 | Mori K., Sano T., Kobayashi H., Yamashita H., J. Am. Chem. Soc., 2018, 140(28), 8902—8909 |
64 | Wang Y., Zheng M., Li Y., Ye C., Chen J., Ye J., Zhang Q., Li J., Zhou Z., Fu X. Z., Wang J., Sun S. G., Wang D., Angew. Chem. Int. Ed., 2022, 61(12), e202115735 |
65 | Chen H., He S., Cao X., Zhang S., Xu M., Pu M., Su D., Wei M., Evans D. G., Duan X., Chem. Mater., 2016, 28(13), 4751—4761 |
66 | He S., Li C., Chen H., Su D., Zhang B., Cao X., Wang B., Wei M., Evans D. G., Duan X., Chem. Mater., 2013, 25(7), 1040— 1046 |
67 | Hendriksen B. L., Ackermann M. D., Van Rijn R., Stoltz D., Popa I., Balmes O., Resta A., Wermeille D., Felici R., Ferrer S., Frenken J. W., Nat. Chem., 2010, 2(9), 730—734 |
68 | Yao Y., Hu S., Chen W., Huang Z. Q., Wei W., Yao T., Liu R., Zang K., Wang X., Wu G., Yuan W., Yuan T., Zhu B., Liu W., Li Z., He D., Xue Z., Wang Y., Zheng X., Dong J., Chang C. R., Chen Y., Hong X., Luo J., Wei S., Li W. X., Strasser P., Wu Y., Li Y., Nat. Catal., 2019, 2(4), 304—313 |
69 | Jiang L., Liu K., Hung S. F., Zhou L., Qin R., Zhang Q., Liu P., Gu L., Chen H. M., Fu G., Zheng N., Nat. Nanotechnol., 2020, 15(10), 848—853 |
70 | Yang J., Li W. H., Tan S., Xu K., Wang Y., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(35), 19085—19091 |
71 | Lin L., Zhou W., Gao R., Yao S., Zhang X., Xu W., Zheng S., Jiang Z., Yu Q., Li Y. W., Shi C., Wen X. D., Ma D., Nature, 2017, 544(7648), 80—83 |
72 | Xiong Y., Sun W., Xin P., Chen W., Zheng X., Yan W., Zheng L., Dong J., Zhang J., Wang D., Li Y., Adv. Mater., 2020, 32(34), e2000896 |
73 | Xia C., Qiu Y., Xia Y., Zhu P., King G., Zhang X., Wu Z., Kim J. Y. T., Cullen D. A., Zheng D., Li P., Shakouri M., Heredia E., Cui P., Alshareef H. N., Hu Y., Wang H., Nat. Chem., 2021, 13(9), 887—894 |
74 | Hai X., Xi S., Mitchell S., Harrath K., Xu H., Akl D. F., Kong D., Li J., Li Z., Sun T., Yang H., Cui Y., Su C., Zhao X., Li J., Pérez⁃Ramírez J., Lu J., Nat. Nanotechnol., 2022, 17(2), 174—181 |
75 | Qu Y., Li Z., Chen W., Lin Y., Yuan T., Yang Z., Zhao C., Wang J., Zhao C., Wang X., Zhou F., Zhuang Z., Wu Y., Li Y., Nat. Catal., 2018, 1(10), 781—786 |
76 | Liu K., Zhao X., Ren G., Yang T., Ren Y., Lee A. F., Su Y., Pan X., Zhang J., Chen Z., Yang J., Liu X., Zhou T., Xi W., Luo J., Zeng C., Matsumoto H., Liu W., Jiang Q., Wilson K., Wang A., Qiao B., Li W., Zhang T., Nat. Commun., 2020, 11(1), 1263 |
77 | Liu Q., Liu X., Zheng L., Shui J., Angew. Chem. Int. Ed., 2018, 57(5), 1204—1208 |
78 | Liu J., Kong X., Zheng L., Guo X., Liu X., Shui J., ACS Nano, 2020, 14(1), 1093—1101 |
79 | James S. L., Adams C. J., Bolm C., Braga D., Collier P., Friščić T., Grepioni F., Harris K. D. M., Hyett G., Jones W., Krebs A., Mack J., Maini L., Orpen A. G., Parkin I. P., Shearouse W. C., Steed J. W., Waddell D. C., Chem. Soc. Rev., 2012, 41(1), 413—447 |
80 | Baláž P., Achimovičová M., Baláž M., Billik P., Cherkezova⁃Zheleva Z., Criado J. M., Delogu F., Dutková E., Gaffet E., Gotor F. J., Kumar R., Mitov I., Rojac T., Senna M., Streletskii A., Wieczorek⁃Ciurowa K., Chem. Soc. Rev., 2013, 42(18), 7571—7637 |
81 | Zhan W., Yang S., Zhang P., Guo Y., Lu G., Chisholm M. F., Dai S., Chem. Mater., 2017, 29(17), 7323—7329 |
82 | Schreyer H., Eckert R., Immohr S., De Bellis J., Felderhoff M., Schüth F., Angew. Chem. Int. Ed., 2019, 58(33), 11262—11265 |
83 | He X., Deng Y., Zhang Y., He Q., Xiao D., Peng M., Zhao Y., Zhang H., Luo R., Gan T., Ji H., Ma D., Cell Rep. Phys. Sci., 2020, 1(1), 100004 |
84 | Gan T., Liu Y., He Q., Zhang H., He X., Ji H., ACS Sustainable Chemistry & Engineering, 2020, 8(23), 8692—8699 |
85 | Zhao Y., Han Q., Cheng Z., Jiang L., Qu L., Nano Today, 2017, 12, 14—30 |
86 | Zhang D., Gökce B., Barcikowski S., Chem. Rev., 2017, 117(5), 3990—4103 |
87 | Gengler R. Y. N., Badali D. S., Zhang D., Dimos K., Spyrou K., Gournis D., Miller R. J. D., Nat. Commun., 2013, 4(1), 2560 |
88 | Peng Y., Cao J., Sha Y., Yang W., Li L., Liu Z., Light Sci. Appl., 2021, 10(1), 168 |
89 | Zhang N., Zhang X., Tao L., Jiang P., Ye C., Lin R., Huang Z., Li A., Pang D., Yan H., Wang Y., Xu P., An S., Zhang Q., Liu L., Du S., Han X., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(11), 6170—6176 |
90 | Wan J., Zhao Z., Shang H., Peng B., Chen W., Pei J., Zheng L., Dong J., Cao R., Sarangi R., Jiang Z., Zhou D., Zhuang Z., Zhang J., Wang D., Li Y., J. Am. Chem. Soc., 2020, 142(18), 8431—8439 |
91 | Wu F., Pan C., He C. T., Han Y., Ma W., Wei H., Ji W., Chen W., Mao J., Yu P., Wang D., Mao L., Li Y., J. Am. Chem. Soc., 2020, 142(39), 16861—16867 |
92 | Tian S., Hu M., Xu Q., Gong W., Chen W., Yang J., Zhu Y., Chen C., He J., Liu Q., Zhao H., Wang D., Li Y., Sci. China Mater., 2020, 64(3), 642—650 |
93 | Li X., Rong H., Zhang J., Wang D., Li Y., Nano Res., 2020, 13(7), 1842—1855 |
94 | Zhang J., Zheng C., Zhang M., Qiu Y., Xu Q., Cheong W. C., Chen W., Zheng L., Gu L., Hu Z., Wang D., Li Y., Nano Res., 2020, 13(11), 3082—3087 |
95 | Han A., Wang X., Tang K., Zhang Z., Ye C., Kong K., Hu H., Zheng L., Jiang P., Zhao C., Zhang Q., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(35), 19262—19271 |
96 | Holton O. T., Stevenson J. W., Platin. Met. Rev., 2013, 57(4), 259—271 |
97 | Mao J., He C. T., Pei J., Liu Y., Li J., Chen W., He D., Wang D., Li Y., Nano Lett., 2020, 20(5), 3442—3448 |
98 | Jiang D., Ni D., Rosenkrans Z. T., Huang P., Yan X., Cai W., Chem. Soc. Rev., 2019, 48(14), 3683—3704 |
99 | Korschelt K., Tahir M. N., Tremel W., Chem. Eur. J., 2018, 24(39), 9703—9713 |
100 | Ji S., Jiang B., Hao H., Chen Y., Dong J., Mao Y., Zhang Z., Gao R., Chen W., Zhang R., Liang Q., Li H., Liu S., Wang Y., Zhang Q., Gu L., Duan D., Liang M., Wang D., Yan X., Li Y., Nat. Catal., 2021, 4(5), 407—417 |
101 | Muravev V., Spezzati G., Su Y. Q., Parastaev A., Chiang F. K., Longo A., Escudero C., Kosinov N., Hensen E. J. M., Nat. Catal., 2021, 4(6), 469—478 |
102 | Wang Y., Wan X., Liu J., Li W., Li Y., Guo X., Liu X., Shang J., Shui J., Nano Res., 2022, 15(4), 3082—3089 |
[1] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[2] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[3] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[4] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[5] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[6] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[7] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[8] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[9] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
[10] | YIN Xiaoju, SUN Xun, ZHAO Chenghao, JIANG Bo, ZHAO Chenyang, ZHANG Naiqing. Research Progress of Single Atomic Catalysts in Lithium-sulfur Batteries [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220076. |
[11] | WU Jun, HE Guanchao, FEI Huilong. Self-supported Film Electrodes Decorated with Single Atoms for Energy Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220051. |
[12] | XIONG Junyu, WANG Shanshan, XU Yanqing, HU Changwen. Selective Oxidation of Atomically Dispersed Fe-N-C Catalyst Under Mild Conditions [J]. Chem. J. Chinese Universities, 2020, 41(6): 1262. |
[13] | YUAN Zhongwen, HE Lizhen, CHEN Tianfeng. Biomedical Applications of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2020, 41(12): 2690. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||