Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220199.doi: 10.7503/cjcu20220199
• Review • Previous Articles Next Articles
GUO Zhiqiang1(), YANG Boru1, XI Chanjuan2(
)
Received:
2022-03-30
Online:
2022-07-10
Published:
2022-05-08
Contact:
GUO Zhiqiang,XI Chanjuan
E-mail:gzq@sxu.edu.cn;cjxi@tsinghua.edu.cn
Supported by:
CLC Number:
TrendMD:
GUO Zhiqiang, YANG Boru, XI Chanjuan. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220199.
1 | Dabral S., Schaub T., Adv. Synth. Catal., 2019, 361(2), 223—246 |
2 | Zhang Y., Zhang T., Das S., Green Chem., 2020, 22(6), 1800—1820 |
3 | Song Q. W., Zhou Z. H., He L. N., Green Chem., 2017, 19(16), 3707—3728 |
4 | Plasseraud L., ChemSusChem, 2010, 3(5), 631—632 |
5 | Yuan G. Q., Qi C. R., Wu W. Q., Jiang H. F., Curr. Opin. Green. Sust., 2017, 3, 22—27 |
6 | Huff C. A., Sanford M. S., ACS Catal., 2013, 3(10), 2412—2416 |
7 | Yu B., Zhang H. Y., Zhao Y. F., Chen S., Xu J. L., Huang C. L., Liu Z. M., Green Chem., 2013, 15(1), 95—99 |
8 | Uyen T. V. Q., Yoo W. J., Kobayashi S., Angew. Chem. Int. Ed., 2015, 54(32), 9209—9212 |
9 | Cui X. J., Zhang Y., Deng Y. Q., Shi F., Chem. Commun., 2014, 50(88), 13521—13524 |
10 | Jacquet O., Frogneux X., Das Neves Gomes C., Cantat T., Chem. Sci., 2013, 4(5), 2127—2131 |
11 | Jin G. H., Werncke C. G., Escudié Y., Sabo⁃Etienne S., Bontemps S., J. Am. Chem. Soc., 2015, 137(30), 9563—9566 |
12 | Daw P., Chakraborty S., Leitus G., Diskin⁃Posner Y., Ben⁃David Y., Milstein D., ACS Catal., 2017, 7(4), 2500—2504 |
13 | Bagherzadeh S., Mankad N. P., J. Am. Chem. Soc., 2015, 137(34), 10898—10901 |
14 | Sau S. C., Bhattacharjee R., Vardhanapu P. K., Vijaykumar G., Datta A., Mandal S. K., Angew. Chem. Int. Ed., 2016, 55(48), 15147—15151 |
15 | Das Neves Gomes C., Blondiaux E., Thuéry P., Cantat T., Chem. Eur. J., 2014, 20(23), 7098—7106 |
16 | Courtemanche M., Legare M., Maron L., Fontaine F., J. Am. Chem. Soc., 2013, 135(25), 9326—9329 |
17 | Cho B. T., Chem. Soc. Rev., 2009, 38(2), 443—452 |
18 | Dovqaliuk I., Safin D. A., Tumanov N. A., Morelle F., Moulai A., Černý R., Łodziana Z., Devillers M., Filinchuk Y., ChemSusChem, 2017, 10(23), 4725—4734 |
19 | Burr J. G., Brown W. G., Heller H. E., J. Am. Chem. Soc., 1950, 72, 2560—2562 |
20 | Zhang X., Kam L., Trerise R., Williams T. J., Acc. Chem. Res., 2017, 50(1), 86—95 |
21 | Kim S. K., Han W. S., Kim T. J., Nam S. W., Mitoraj M., Piekoś A., Michalak A., Hwang S., Kang S. O., J. Am. Chem. Soc., 2010, 132(29), 9954—9955 |
22 | Bluhm M. E., Bradley M. G., Butterick R., Kusari U., Sneddon L. G., J. Am. Chem. Soc., 2006, 128(24), 7748—7749 |
23 | Zhao Y. L., Liu X., Zheng L. J., Du Y. L., Shi X. R., Liu Y. L, Yan Z. Q., You J. M., Jiang Y. Y., J. Org. Chem., 2020, 85(2), 912—923 |
24 | Fujiwara K., Yasuda S., Mizuta T., Organometallics, 2014, 33(22), 6692—6695 |
25 | Knopf I., Cummins C. C., Organometallics, 2015, 34(9), 1601—1603 |
26 | Lu Z. Y., Williams T. J., ACS Catal., 2016, 6(10), 6670—6673 |
27 | Sabet⁃Sarvestani H., Eshghi H., Izadyar M., Noroozi⁃Shad N., Bakavoli M., Ziaee F., Int. J. Hydrogen Energ., 2016, 41(26), 11131—11140 |
28 | Hao L. D., Zhang H. Y., Luo X. Y., Wu C. L., Zhao Y. F., Liu X. W., Gao X., Chen Y., Liu Z. M., J. CO2 Util., 2017, 22, 208—211 |
29 | Guo Z. Q., Zhang B., Wei X. H., Xi C. J., ChemSusChem, 2018, 11(14), 2296—2299 |
30 | Zou Q. Z., Long G. C., Zhao T. X., Hu X. B., Green Chem., 2020, 22(4), 1134—1138 |
31 | Kumar A., Sharma P., Sharma N., Kumar Y., Mahajan D., Rsc. Adv., 2021, 11(41), 25777—25787 |
32 | Petersen A. R., Lauridsen J. M. V., Lee J. W., Eur. J. Org. Chem., 2020, 7368—7372 |
33 | Guo Z. Q., Pang T. F., Yan L. L., Wei X. H., Chao J. B., Xi C. J., Green Chem., 2021, 23(19), 7534—7538 |
34 | Guo Z. Q., Zhang B., Wei X. H., Xi C. J., Org. Lett., 2018, 20(21), 6678—6681 |
35 | Zhang B., Fan Z. N., Guo Z. Q., Xi C. J., J. Org. Chem., 2019, 84(13), 8661—8667 |
36 | Fletcher C., Jiang Y. J., Amal R., Chem. Eng. Sci., 2015, 137, 301—307 |
37 | Picasso C. V., Safin D. A., Dovgaliuk I., Devred F., Debecker D., Li H. W., Proost J., Filinchuk Y., Int. J. Hydrogen Energ., 2016, 41(32), 14377—14386 |
38 | Liu H., Nie Z., Shao J. A., Chen W. T., Yu Y. P., Green Chem., 2019, 21(13), 3552—3555 |
39 | Ménard G., Stephan D. W., J. Am. Chem. Soc., 2010, 132(6), 1796—1797 |
40 | Zhao T. X., Zhai G. W., Liang J., Li P., Hu X. B., Wu Y. T., Chem. Commun., 2017, 53(57), 8046—8049 |
41 | Zhang B., Du G. X., Hang W., Wang S., Xi C. J., Eur. J. Org. Chem., 2018, 14, 1739—1743 |
42 | Li X., Zhang J. H., Yang Y., Hong H. L., Han L. M., Zhu N., J. Organomet. Chem., 2021, 954/955, 122079 |
43 | Zhao T. X., Li, C., Hu X. B., Liu F., Wu Y. T., Int. J. Hydrogen Energ., 2021, 46(29), 15716—15723 |
44 | Kumar A., Eyyathiyil J., Choudhury J., Inorg. Chem., 2021, 60(15), 11684—11692 |
45 | Nale D. B., Rath D., Parida K. M., Gajengi A., Bhanage B. M., Catal. Sci. Technol., 2016, 6(13), 4872—4881 |
46 | Saptal V. B., Juneja G., Bhanage B. M., New. J. Chem., 2018, 42(19), 15847—15851 |
47 | Saptal V. B., Sasaki T., Bhanage B. M., ChemCatChem, 2018, 10(12), 2593—2600 |
48 | Phatake V. V., Bhanage B. M., Catal. Lett., 2019, 149(1), 347—359 |
49 | Phatake V. V., Mishra A. A., Bhanage B. M., Inorg. Chim. Acta, 2020, 501, 119274 |
50 | Zhang X. W., Wang S., Xi C. J., J. Org. Chem., 2019, 84(15), 9744—9749 |
51 | Zhang Y. M., Zhang H., Gao K., Org. Lett., 2021, 23(21), 8282—8286 |
52 | Zou Q. Z., Yi Y., Zhao T. X., Liu F., Kang C., Hu X. B., J. CO2 Util., 2021, 50, 101590 |
53 | Lombardo L., Yang H., Zhao K., Dyson P. J., Zuttel A., ChemSusChem, 2020, 13(8), 2025—2031 |
54 | Chakraborty S., Zhang J., Krause J. A., Guan H. R., J. Am. Chem. Soc., 2010, 132(26), 8872—8873 |
55 | Chakraborty S., Patel Y. J., Krause J. A., Guan H. R., Polyhedron, 2012, 32(1), 30—34 |
56 | Chakraborty S., Zhang J., Patel Y. J., Krause J. A., Guan H. R., Inorg. Chem., 2013, 52(1), 37—47 |
57 | Liu T., Meng W. J., Ma Q. Q., Zhang J., Li H. Z., Li S. J., Zhao Q. Y., Chen X. N., Dalton T., 2017, 46(14), 4504—4509 |
58 | Murphy L. J., Hollenhorst H., McDonald R., Ferguson M., Lumsden M. D., Turculet L., Organometallics, 2017, 36(19), 3709—3720 |
59 | Bontemps S., Vendier L., Sabo⁃Etienne S., Angew. Chem. Int. Ed., 2012, 51(7), 1671—1674 |
60 | Bontemps S., Vendier L., Sabo⁃Etienne S., J. Am. Chem. Soc., 2014, 136(11), 4419—4425 |
61 | Sgro M. J., Stephan D. W., Angew. Chem. Int. Ed., 2012, 51(45), 11343—11345 |
62 | Zhang L., Cheng J. H., Carry B., Hou Z. M., J. Am. Chem. Soc., 2012, 134(35), 14314—14317 |
63 | Carry B., Zhang L., Nishiura M., Hou Z. M., Angew. Chem. Int. Ed., 2016, 55(21), 6257—6260 |
64 | Li Z. H., Zhang L., Nishiura M., Luo G., Luo Y., Hou Z. M., J. Am. Chem. Soc., 2020, 142(4), 1966—1974 |
65 | Shintani R., Nozaki K., Organometallics, 2013, 32(8), 2459—2462 |
66 | Suh H. W., Guard L. M., Hazari N., Chem. Sci., 2014, 5(10), 3859—3872 |
67 | Jin G. H., Werncke C. G., Escudié Y., Sabo⁃Etienne S., Bontemps S., J. Am. Chem. Soc., 2015, 137(30), 9563—9566 |
68 | Zhang D., Jarava⁃Barrera C., Bontemps S., ACS Catal., 2021, 11(8), 4568—4575 |
69 | Tamang S. R., Findlater M., Dalton T., 2018, 47(25), 8199—8203 |
70 | Courtemanche M. A., Larouche J., Légare M. A., Bi W. H., Maron L., Fontaine F. G., Organometallics, 2013, 32(22), 6804—6811 |
71 | Franz D., Jandl C., Stark C., Inoue S., ChemCatChem, 2019, 11(21), 5275—5281 |
72 | Chia C. C., Teo Y. C., Cham. N., Ho S. Y. F., Ng Z. H., Toh H. M., Mezailles N., So C. W., Inorg. Chem., 2021, 60(7), 4569—4577 |
73 | Abdalla J. A. B., Riddlestone I. M., Tirfoin R., Aldridge S., Angew. Chem. Int. Ed., 2015, 54(17), 5098—5102 |
74 | Wang X. M., Chang K. J., Xu X., Dalton. T., 2020, 49(22), 7324—7327 |
75 | Mukherjee D., Osseili H., Spaniol T. P., Okuda J., J. Am. Chem. Soc., 2016, 138(34), 10790—10793 |
76 | Courtemanche M. A., Légaré M. A., Maron L., Fontaine F. G., J. Am. Chem. Soc., 2013, 135(25), 9326—9329 |
77 | Légaré M. A., Courtemanche M. A., Fontaine F. G., Chem. Commun., 2014, 50(77), 11362—11365 |
78 | Das Neves Gomes C., Blondiaux E., Thuery P., Cantat T., Chem. Eur. J., 2014, 20(23), 7098—7106 |
79 | Blondiaux E., Pouessel J., Cantat T., Angew. Chem. Int. Ed., 2014, 53(45), 12186—12190 |
80 | Wang T., Stephan D. W., Chem. Eur. J., 2014, 20(11), 3036—3039 |
81 | Chen W. C., Shen J. S., Jurca T., Peng C. J., Lin Y. H., Wang Y. P., Shih W. C., Yap G. P. A., Ong T. G., Angew. Chem. Int. Ed., 2015, 54(50), 15207—15212 |
82 | von Wolff N., Lefèvre G., Berthet J. C., Thuéry P., Cantat T., ACS Catal., 2016, 6(7), 4526—4535 |
83 | Saptal V. B., Bhanage B. M., ChemSusChem, 2016, 9(15), 1980—1985 |
84 | Sokolovicz Y. C. A., Faza O. N., Specklin D., Jacques B., López C. S., dos Santos J. H. Z., Schrekker H. S., Dagorne S., Catal. Sci. Technol., 2020, 10(8), 2407—2414 |
85 | Ramos A., Antiñolo A., Carrillo⁃Hermosilla F., Fernández⁃Galán R., Inorg. Chem., 2020, 59(14), 9998—10012 |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[3] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[4] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[5] | HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220222. |
[6] | SONG Dewen, WANG Mingwang, WANG Yani, JIAO Zhenmei, NING Hui, WU Mingbo. Progress of CO2 Electroreduction to Oxalic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220248. |
[7] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[8] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[9] | ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2 [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255. |
[10] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[11] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[12] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[13] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[14] | YANG Tao, YAO Huiying, LI Qing, HAO Wei, CHI Lifeng, ZHU Jia. Density Functional Theoretical Studies on the Promising Electrocatalyst of M-BHT(M=Co or Cu) for CO2 Reduction to CH4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1268. |
[15] | WANG Peng, LIU Huan, YANG Da. Recent Advances on Hydrocarbonylation of Unsaturated Hydrocarbons by Involving Carbon Monoxide [J]. Chem. J. Chinese Universities, 2021, 42(10): 3024. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||