Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (10): 3024.doi: 10.7503/cjcu20210367
• Review • Previous Articles Next Articles
WANG Peng1(), LIU Huan2, YANG Da2
Received:
2021-05-31
Online:
2021-10-10
Published:
2021-10-10
Contact:
WANG Peng
E-mail:lzuwangpeng@mail.sioc.ac.cn
CLC Number:
TrendMD:
WANG Peng, LIU Huan, YANG Da. Recent Advances on Hydrocarbonylation of Unsaturated Hydrocarbons by Involving Carbon Monoxide[J]. Chem. J. Chinese Universities, 2021, 42(10): 3024.
1 | Sakurai Y., Sakaguchi S., Ishii Y., Tetrahedron Lett., 1999, 40(9), 1701—1704 |
2 | Fañanás F. J., Hoberg H., J. Organomet. Chem., 1984, 277(1), 135—142 |
3 | Tsuji J., Morikawa M., Kiji J., Tetrahedron Lett., 1963, 4(16), 1061—1064 |
4 | Fujiwara Y., Kawauchi T., Taniguchi H., J. Chem. Soc., Chem. Commun., 1980, 5, 220—221 |
5 | Fujiwara Y., Takaki K., Watanabe J., Uchida Y., Taniguchi H., Chem. Lett., 1989, 18(9), 1687—1688 |
6 | Kurioka M., Nakata K., Jintoku T., Taniguchi Y., Takaki K., Fujiwara Y., Chem. Lett., 1995, 24(3), 244—244 |
7 | Sargent B. T., Alexanian E. J., J. Am. Chem. Soc., 2016, 138(24), 7520—7523 |
8 | Jiang B., Zhang X. F., Yang C. H., Org. Chem. Front., 2018, 5, 1724—1727 |
9 | Yu W. J., Yang S. W., Xiong F., Fan T. X., Feng Y., Huang Y. Y., Fu J. K., Wang T., Org. Biomol. Chem., 2018, 16(17), 3099—3103 |
10 | Dolle R. E., Schmidt S. J., Kruse L. I., J. Chem. Soc., Chem. Commun., 1987, 904—905 |
11 | Andrus M. B., Ma Y. D., Zang Y. F., Song C., Tetrahedron Lett., 2002, 43(50), 9137—9140 |
12 | Dubbaka S. R., Vogel P., J. Am. Chem. Soc., 2003, 125(50), 15292—15293 |
13 | Alper H., Urso F., Smith D. J. H., J. Am. Chem. Soc., 1983, 105(22), 6737—6738 |
14 | Rowley J. M., Lobkovsky E. B., Coates G. W., J. Am. Chem. Soc., 2007, 129(16), 4948—4960 |
15 | Wang L., Neumann H., Spannenberg A., Beller M., Chem. Eur. J., 2018, 24(9), 2164—2172 |
16 | Pongrácza P., Seni A. A., Mikac L. T., Kollára L., Mol. Catal., 2017, 438, 15—18 |
17 | Echavarren A. M., Stille J. K., J. Am. Chem. Soc., 1988, 110(5), 1557—1565 |
18 | Rahman O., Kihlberg T., Langström B., Eur. J. Org. Chem., 2004, 2004(3), 474—478 |
19 | Schoenberg A., Bartoletti I., Heck R. F., J. Org. Chem., 1974, 39(23), 3318—3326 |
20 | Beller M., Wu X. F., Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C—X Bonds, Springer, Amsterdam, 2013 |
21 | Dasa D., Bhanage B. M., Adv. Synth. Catal., 2020, 362(15), 3022—3058 |
22 | Marinkovic J. M., Riisager A., Franke R., Wasserscheid P., Haumann M., Ind. Eng. Chem. Res., 2019, 58(7), 2409—2420 |
23 | Peng J. B., Wu F. P., Wu X. F., Chem. Rev., 2019, 119(4), 2090—2127 |
24 | Quintero⁃Duquea S., Dyballab K. M., Fleischer I., Tetrahedron Lett., 2015, 56(21), 2634—2650 |
25 | Yin Z. P., Xu J. X., Wu X. F., ACS Catal., 2020, 10(11), 6510—6531 |
26 | Li Y. H., Hu Y. Y., Wu X. F., Chem. Soc. Rev., 2018, 47, 172—194 |
27 | Konishi H., Manabe K., Tetrahedron Lett., 2019, 60(42), 151147 |
28 | Zhang S. K., Neumann, H., Beller M., Chem. Soc. Rev., 2020, 49(10), 3187—3210 |
29 | Peng J. B., Geng H. Q., Wu X. F., Chem., 2019, 5(3), 526—552 |
30 | Franke R., Selent, D., Börner A., Chem. Rev., 2012, 112(11), 5675—5732 |
31 | Ojima I., Tsai C. Y., Tzamarioudaki M., Bonafoux D., Org. React.,2000, 56(Chapter 1), 1—68 |
32 | Roelen O.(to Chemische Verwertungsgesellschaft Oberhausenm.b.H.), GermanPatent DE 849548, 1938 |
33 | Hans W., Chem. Rev., 1960, 60(2), 169—184 |
34 | Zheng J., Lin J. H., Yu L.Y., Wei Y., Zheng X., Xiao J. C., Org. Lett., 2015, 17(24), 6126—6129 |
35 | Duff J. C., Bills E. J., J. Chem. Soc., 1932, 1987—1988 |
36 | Drommi D., Arena C. G., Catal. Commun., 2018, 115, 36—39 |
37 | Yu S. M., Snavely W. K., Chaudhari R. V., Subramaniama B., Mol. Catal., 2019, 484, 110721—110726 |
38 | Tian M., Li H. F., Wang L. L., Chinese J. Catal., 2018, 39(10), 1646—1652 |
39 | Ren W. L., Chang W. J., Dai J., Shi Y., Li J. F., Shi Y. A., J. Am. Chem. Soc., 2016, 138(45), 14864—14867 |
40 | Li Y. Q., Liu H., Wang P., Yang D., Zhao X. L., Liu Y., Faraday Discuss., 2016, 190, 219—230 |
41 | Ren X. Y., Zheng Z. Y., Zhang L., Wang Z., Xia C. G., Ding K. L., Angew. Chem. Int. Ed., 2017, 56(1), 310-313 |
42 | Phanopoulos A., Nozaki K., ACS Catal., 2018, 8(7), 5799—5809 |
43 | Pandey S., Raj K. V., Shinde D. R., Vanka K., Kashyap V., Kurungot S., Vinod C. P., Chikkali S. H., J. Am. Chem. Soc., 2018, 140(12), 4430—4439 |
44 | You C., Li X. X., Yang Y. H., Yang Y. S., Tan X. F., Li S. L., Wei B., Lv H., Chung L. W., Zhang X. M., Nat. Commun., 2018, 9, 2045 |
45 | Feng J. Y., Ma Q. Q., Song H. B., Liu Q. Q., Xu B. Y., Zhang M., Li S. M., Yua S. T., Jin X., Green Chem.,2019, 21(12), 3267—3275 |
46 | Dong K., Sun Q., Tang Y. Q., Shan C., Aguila B., Wang S., Meng X. J., Ma S. Q., Xiao F. S., Nat. Commun., 2019, 10, 3059 |
47 | Qiao B. T., Li T. B., Chen F., Liang R., Wang H., Su Y., Wang A. Q., Zhang T., Angew. Chem. Int. Ed., 2020, 59(19), 7430—7434 |
48 | Hoodl D. M., Johnson R. A., Carpenter A. E., Younker J. M., Vinyard D. J., Stanley G. G., Science, 2020, 367(6477), 542—548 |
49 | Roberts G. M., Pierce P. J., Woo L. K., Organometallics, 2013, 32(6), 2033—2036 |
50 | Liang B., Liu J., Gao Y. X., Wongkhan K., Shu D. X., Lan Y., Li A., Batsanov A. S., Howard J. A. H., Marder T. B., Chen J. H., Yang Z., Organometallics, 2007, 26(19), 4756—4762 |
51 | Masum M. A., Yamamoto Y., J. Am. Chem. Soc., 1998, 120(15), 3809—3810 |
52 | Zhang X. H., Shen C. R., Xia C. G., Tian X. X., He L., Green Chem., 2018, 20(24), 5533—5539 |
53 | Becker Y., Eisenstadt A., Stille J. K., J. Org. Chem., 1980, 45(11), 2145—2151 |
54 | Ajjou A. N., Alper H., Macromolecules, 1996, 29(5), 1784—1788 |
55 | Murahashi S. I., Imada Y., Taniguchi Y., Higashiura S., J. Org. Chem., 1993, 58(6), 1538—1545 |
56 | Zargarian D., Alper H., Organometallics, 1993, 12(3), 712—724 |
57 | Fujihara T., Nogi K., Xu T., Terao J., Tsuji Y., J. Am. Chem. Soc., 2012, 134(22), 9106—9109 |
58 | McNulty J., Nair J. J., Robertson A., Org. Lett., 2007, 9(22), 4575—4578 |
59 | Barnard C. F. J., Organometallics, 2008, 27(21), 5402—5422 |
60 | Wang Y., Ren W. L., Li J. F., Wang H. N., Shi Y. A., Org. Lett., 2014, 16(22), 5960—5963 |
61 | Sebastián L. G., Alamo M. F., García J. J., Organometallics, 2012, 31(23), 8200—8207 |
62 | Mondal K., Halder P., Sasikumar G. G. P., Das K. V. R. P., Org. Biomol. Chem., 2019, 17(21), 5212—5222 |
63 | Xiao W. J., Alper H., J. Org. Chem., 1998, 63(22), 7939—7944 |
64 | Xiao W. J., Vasapollo G., Alper H., J. Org. Chem., 1998, 63(8), 2609—2612 |
65 | Cao H., McNamee L., Alper H., J. Org. Chem., 2008, 73(9), 3530—3534 |
66 | Hirschbeck V., Gehrtz P. H., Fleischer I., J. Am. Chem. Soc., 2016, 138(51), 16794—16799 |
67 | Xu T. Y., Alper H., J. Am. Chem. Soc., 2014, 136(49), 16970—16973 |
68 | Roberts G. M., Pierce P. J., Woo L. K., Organometallics, 2013, 32(6), 2033—2036 |
69 | Liu J., Liu Q., Franke R., Jackstell R., Beller M., J. Am. Chem. Soc., 2015, 137(26), 8556—8563 |
70 | Hirschbeck V., Gehrtz P. H., Fleischer I., J. Am. Chem. Soc., 2016, 138(51), 16794—16799 |
71 | Dong K. W., Fang X. J., Gulak S., Franke R., Spannenberg A., Neumann H., Jackstell R., Beller M., Nat. Commun., 2017, 8, 14117—14123 |
72 | Illner M., Schmidt M., Pogrzeba T., Urban C., Esche E., Schomacker R., Repke J. U., Ind. Eng. Chem. Res., 2018, 57(27), 8884—8894 |
73 | Yang D., Liu H., Wang D. L., Luo Z. J., Lu Y., Xia F., Liu Y., Green Chem., 2018, 20(11), 2588—2595 |
74 | Yang J., Liu J. W., Neumann H., Franke R., Jackstell R., Beller M., Science, 2019, 366(6472), 1514—1517 |
75 | Zhu J. P., Gao B., Huang H. M., Org. Biomol. Chem., 2017, 15(14), 2910—2913 |
76 | Gao B., Huang H. M., Org. Lett., 2017, 19(22), 6260—6263 |
77 | Hu Y., Huang H. M., Org. Lett., 2017, 19(19), 5070—5073 |
78 | Huang Q. F., Hua R. M., Adv. Synth. Catal., 2007, 349(6), 849—852 |
79 | Mane R. S., Bhanage B. M., Asian J. Org. Chem., 2018, 7(1), 160—164 |
80 | Zhang G. Y., Gao B., Huang H. M., Angew. Chem. Int. Ed., 2015, 54(26), 7657—7661 |
81 | Lee S. I., Son S. U., Chung Y. K., Chem. Commun., 2002, (12), 1310—1311 |
82 | Li H. Q., Fang X. J., Jackstell R., Neumann H., Beller M., Chem. Commun., 2016, 52(44), 7142—7145 |
83 | Li H. Q., Dong K. W., Neumann H., Beller M., Angew. Chem. Int. Ed., 2015, 54(35), 10239—10243 |
84 | Wang D. L., Liu H., Yang D., Wang P., Lu Y., Liu Y., ChemCatChem., 2017, 9(22), 4206—4211 |
85 | Wu X. F., Neumann H., Beller M., Chem. Asian J., 2010, 5(10), 2168—2172 |
86 | Zhou X. B., Chen A., Du W., Wang Y. W., Peng Y., Huang H. M., Org. Lett., 2019, 21(22), 9114—9118 |
87 | Li Y., Alper H., Yu Z. K., Org. Lett., 2006, 8(23), 5199—5201 |
88 | Driller K. M., Prateeptongkum S., Jackstell R., Beller M., Angew. Chem. Int. Ed., 2011, 50(2), 537—541 |
89 | Fang X. J., Jackstell R., Beller M., Angew. Chem. Int. Ed., 2013, 52(52), 14089—14093 |
90 | Dong K. W., Fang X. J., Jackstell R., Laurenczy G., Li Y. H., Beller M., J. Am. Chem. Soc., 2015, 137(18), 6053—6058 |
91 | Gao B., Zhang G. Y., Zhou X. B., Huang H. M., Chem. Sci., 2018, 9(2), 380—386 |
92 | Juliá⁃Hernández F., Moragas T., Cornella J., Martin R., Nature, 2017, 545(7652), 84—88 |
93 | Koch H., Brennstoff Chem., 1955, 36, 321 |
94 | Alper H., Woell J. B., Despeyroux B., Smith D. J. H., J. Chem. Soc., Chem. Commun., 1983, (21), 1270—1271 |
95 | Li J. H., Li G. P., Jiang H. F., Chen M. C., Tetrahedron Lett., 2001, 42(39), 6923—6924 |
96 | Huang Z. J., Cheng Y. Z., Chen X. P., Wang H. F., Du C. X., Li Y. H., Chem. Commun., 2018, 54(32), 3967—3970 |
97 | Wang K. Y., Zhang Y., Wang H. Y., Xia X. M., Liu T. X., Pestic. Biochem. and Physiol., 2009, 96(1), 51—55 |
98 | Botteghi C., Bona D. D., Paganelli S., Marchetti M., Sechi B., Anales de Quimica, 1996, 92(2), 101—107 |
99 | Siegel V. H., Himmele W., Chem. Abstr., 1974, 81, 120222 |
100 | Rovira L., Vaquero M., Ferran A. V., J. Org. Chem., 2015, 80(20), 10397—10403 |
101 | Dieguez M., Pamies O., Claver C., Chem. Commun., 2005, 9, 1221—1223 |
102 | Khokhar M. D., Shuklaa R. S., Jasra R. V., J. Mol. Catal. A: Chem., 2015, 400, 1—6 |
103 | Chaudhari R. V., Chansarkar R., Mukhopadhyay K., Kelkar A. A., Process for Preparation of Esters of Hydroxy Tiglic Aldehydes, US2005/215814(A1), 2005⁃09⁃29 |
104 | Fitton P., Moffet H., Hoffmann⁃La Roche Inc., Preparation of Esters of Hydroxy Tiglic Aldehyde, US4124619(A), 1978⁃11⁃07 |
105 | Lee C. W., Alper H., J. Org. Chem., 1995, 60(3), 499—503 |
106 | Clarke M. L., Roff G. J., Chem. Eur. J., 2006, 12(31), 7978—7986 |
107 | Cunillera A., Ruiz A., Godarda C., Adv. Synth. Catal.,2019, 361(18), 4201—4207 |
108 | Lin Y. Y., Yang X. Q., Wang H. X., Xu B. B., Li G., Technical Method for Producing Propyl Aldehyde Through Hydroformylation of Ethylene, CN102336638A, 2012⁃02⁃01(林毓勇, 杨秀全, 王海霞, 徐彬彬, 李刚. 一种乙烯氢甲酰化生产丙醛工艺的方法, CN102336638A, 2012⁃02⁃01) |
109 | Chen W. M., Ding Y. J., Song X. G., Zhu H. J., Yan L., Wang T., Chinese J. Catal., 2012, 33(6), 1007—1013 |
110 | Pei Y. P., Ding Y. J., Zang J., Song X. G., Dong W. D., Zhu H. J., Wang T., Chen W. M., Chinese J. Catal., 2012, 33(5), 808—812 |
111 | Song X. G., Ding Y. J., Chen W. M., Dong W. D., Pei Y. P., Zang J., Yan L., Lu Y., Catal. Commun., 2012, 19, 100—104 |
112 | Song X. G., Ding Y. J., Chen W. M., Dong W. D., Pei Y. P., Zang J., Yan L., Lu Y., Energy Fuels, 2012, 26(11), 6559—6566 |
113 | Li C. Y., Yan L., Lu L. L., Xiong K., Wang W. L., Jiang M., Liu J., Song X. G., Zhan Z. P., Jiang Z., Ding Y. J., Green Chem., 2016, 18(10), 2995—3005 |
114 | Li C. Y., Yan L., Lu L. L., Xiong K., Wang W. L., Jiang M., Liu J., Song X. G., Zhan Z. P., Jiang Z., Ding Y. J., J. Catal., 2017, 353, 123—132 |
115 | Zhou R., Yuan L., Song X. G., Liu Y., Jiang Z., Lin R. H., Ding Y. J., Adv. Mater., 2019, 31(50), 1904976 |
116 | Zhou R., Yang L., Lyu Y., Song X. G., Zheng C. Y., Feng S. Q., Jiang Z., Ding Y. J., J. Catal., 2019, 369, 249—256 |
117 | Musser M. T., Ullmanns Encyclopedia of Industrial Chemistry, Wiley⁃VCH, Weinheim, 2000 |
118 | Alini S., Babini P., Handbook of Advanced Methods and Processes in Oxidation Catalysis, Imperial College Press, London, 2014 |
119 | Denis P., Patois C., Perron R., Process for Hydroxycarbonylation of Butadiene, EP0648731(A1), 1995⁃04⁃19 |
120 | Atadan E. M., Bruner H. S., Process for the Preparation of Adipic Acid or Pentenoic Acid, US5292944(A), 1994⁃03⁃08 |
121 | Drent E., Jager W. W., Process for the Carbonylation of Conjugated Dienes, WO00056695(A1), 2000⁃09⁃28 |
122 | Sielcken O. E., Process for the Preparation of 3⁃Pentenoic Acid and/or Ester Thereof Starting from Butadiene, WO0121569(A1), 2001⁃ 03⁃29 |
123 | Yang J., Liu J. W., Ge Y., Huang W. H., Ferretti F., Neumann H., Jiao H. J., Franke R., Jackstell R., Beller M., Angew. Chem. Int. Ed., 2021, 60(17), 9527—9533 |
124 | Skoog E., Shin J. H., Saez⁃Jimenez V., Mapelli V., Olsson L., Biotechnol. Adv., 2018, 36(8), 2248—2263 |
125 | Bart J. C. J., Cavallaro S., Ind. Eng. Chem. Res.,2015, 54(1), 1—46 |
126 | Rios J., Lebeau J., Yang T., Li S., Lynch M. D., Green Chem., 2021, 23, 3172—3190 |
127 | Tortajada A., Ninokata R., Martin R., J. Am. Chem. Soc.,2018, 140(6), 2050—2053 |
128 | Shi Y. K., Hu X. J., Zhu B. L., Zhang S. M., Huang W. P., Chem. Res. Chinese Universities, 2015, 31(5), 851―857 |
129 | Zhang X. P., Li Z. W., Wang P., Fan X. S., Zhang G. S., Chem. Res. Chinese Universities, 2017, 33(3), 384—387 |
[1] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[2] | DONG Yanhong, LU Xinhuan, YANG Lu, SUN Fanqi, DUAN Jingui, GUO Haotian, ZHANG Qinjun, ZHOU Dan, XIA Qinghua. Preparation of Bifunctional Metal-organic Framework Materials and Application in Catalytic Olefins Epoxidation [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220458. |
[3] | REN Ying, LI Changhua, WANG Tao, XUE Shanshan, ZHANG Tingting, JIA Jianfeng, WU Haishun. Theoretical Studies on Pd-catalyzed Oxidative N─H Carbonylation to Synthesis of 1,3,4-Oxadiazole-2(3H)-one Heterocyclic Compounds [J]. Chem. J. Chinese Universities, 2021, 42(6): 1793. |
[4] | GUO Shujia, WANG Sen, ZHANG Li, QIN Zhangfeng, WANG Pengfei, DONG Mei, WANG Jianguo, FAN Weibin. Regulating the Acid Sites Distribution in ZSM-5 Zeolite and Its Catalytic Performance in the Conversion of Methanol to Olefins [J]. Chem. J. Chinese Universities, 2021, 42(1): 227. |
[5] | XU Wenyi,FENG Yisi. Oxidative Trifluoromethylation of CF3SO2Na with Olefins Mediated by Diacetyl† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1567. |
[6] | ZHANG Ronghui, MIN Deng, WANG Lailai, XIE Wenjian. Research Progress of Catalysts for Gas-phase Fluorination to Synthesize Hydorfluoroolefins† [J]. Chem. J. Chinese Universities, 2020, 41(10): 2199. |
[7] | ZHANG Xiaopeng, NIU Xueli, GAO Hemei, FAN Xuesen, ZHANG Guisheng. Selenium-catalyzed Carbonylation to 1,3,4-Thiadiazol-2-ylcarbamates [J]. Chem. J. Chinese Universities, 2019, 40(8): 1637. |
[8] | YIN Jiao, ZHANG Guoqiang, YAN Lifei, JIA Dongsen, ZHENG Huayan, LI Zhong. Influence of Structure Evolution of CuY Catalyst During the Reaction Process on Its Catalytic Performance for Oxidative Carbonylation of Methanol† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1510. |
[9] | HAN Yanmei, GAO Zhihua, HUANG Wei. Effects of AlOOH Structure on the Reaction of Methanol and Carbon Monoxide† [J]. Chem. J. Chinese Universities, 2017, 38(5): 823. |
[10] | ZHANG Guoqiang, ZHENG Huayan, HAO Zhiqiang, LI Zhong. Effect of Activated Carbon Surface Chemistry on the Properties of Cu Particles and the Catalytic Performance for Oxidative Carbonylation of Methanol† [J]. Chem. J. Chinese Universities, 2016, 37(7): 1380. |
[11] | LIU Rong, ZHA Fei, YANG Aimei, CHANG Yue. Synthesis of Light Olefins from CO2 Hydrogenation Catalyzed over Rare Earths Modified CuO-ZnO-ZrO2/SAPO-34† [J]. Chem. J. Chinese Universities, 2016, 37(5): 964. |
[12] | ZHANG Qian, DING Mingyue, ZHANG Yulan, LI Yuping, WANG Chenguang, WANG Tiejun, MA Longlong. Oligomerization of Biomass Cracking Gas to Gasoline Distillates over Amorphous Silica-alumina† [J]. Chem. J. Chinese Universities, 2016, 37(11): 2060. |
[13] | ZHANG Xiaopeng, LI Zhengwei, WANG Yan, NIU Xueli, ZHANG Guisheng. Selenium-catalyzed Carbonylation of 4-Aminopyridine with Nitro Aromatics to 4-Pyridinylureas† [J]. Chem. J. Chinese Universities, 2016, 37(10): 1804. |
[14] | WANG Yuchun, ZHENG Huayan, LIU Bin, ZHANG Guoqiang, LI Zhong. Chloride-free CuY Catalyst Prepared by Solid State Reaction for Oxidative Carbonylation of Methanol† — Effect of Solid State Reactive Temperature and Copper Loading [J]. Chem. J. Chinese Universities, 2015, 36(12): 2540. |
[15] | WU Gongde, WANG Xiaoli, ZHANG Liming, JIANG Taineng. Au(Ⅰ) Complexes as the Efficient Catalyst for Hydration of Alkynes at Room Temperature† [J]. Chem. J. Chinese Universities, 2015, 36(12): 2461. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||