Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220255.doi: 10.7503/cjcu20220255
• Review • Previous Articles Next Articles
ZHANG Zhen1, DENG Yu2, ZHANG Qinfang2(), YU Dagang2(
)
Received:
2022-04-17
Online:
2022-07-10
Published:
2022-06-09
Contact:
ZHANG Qinfang,YU Dagang
E-mail:zhangqf@scu.edu.cn;dgyu@scu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255.
1 | Sakakura T., Choi J. C., Yasuda H., Chem. Rev., 2007, 107(6), 2365—2387 |
2 | Huang K., Sun C. L., Shi Z. J., Chem. Soc. Rev., 2011, 40(5), 243—2452 |
3 | He M., Sun Y., Han B., Angew. Chem. Int. Ed., 2013, 52(37), 9620—9633 |
4 | Luo J., Larrosa I., ChemSusChem, 2017, 10(17), 3317—3332 |
5 | Song Q. W., Zhou Z. H., He L. N., Green Chem., 2017, 19(16), 3707—3728 |
6 | Zhang W., Zhang N., Guo C., Lü X., Chin. J. Org. Chem., 2017, 37(6), 1309—1321 |
7 | Zhang Z., Ye J. H., Wu D. S., Zhou Y. Q., Yu D. G., Chem. Asian J., 2018, 13(17), 2292—2306 |
8 | Wang S., Xi C., Chem. Soc. Rev., 2019, 48(1), 382—404 |
9 | Zhang L., Li Z., Takimoto M., Hou Z., Chem. Rec., 2020, 20(6), 494—512 |
10 | Song L., Jiang Y. X., Zhang Z., Gui Y. Y., Zhou X. Y., Yu D. G., Chem. Commun., 2020, 56(60), 8355—8367 |
11 | Chen K. H., Li H. R., He L. N., Chin. J. Org. Chem., 2020, 40(8), 2195—2207 |
12 | Zhou C., Li M., Yu J., Sun S., Cheng J., Chin. J. Org. Chem., 2020, 40(8), 2221—2231 |
13 | Liao L. L., Song L., Yan S. S., Ye J. H., Yu D. G., Trend Chem., 2022, 4(6), 512—527 |
14 | Fujihara T., Tsuji Y., Front. Chem., 2019, 7, 430 |
15 | Zhu Q., Wang L., Xia C., Liu C., Chin. J. Org. Chem., 2016, 36(12), 2813—2821 |
16 | Julia⁃Hernandez F., Gaydou M., Serrano E., van Gemmeren M., Martin R., Top Curr. Chem., 2016, 374(4), 45 |
17 | Borjesson M., Moragas T., Gallego D., Martin R., ACS Catal., 2016, 6(10), 6739—6749 |
18 | Chen Y. G., Xu X. T., Zhang K., Li Y. Q., Zhang L. P., Fang P., Mei T. S., Synthesis, 2018, 50(1), 35—48 |
19 | Tortajada A., Julia⁃Hernandez F., Borjesson M., Moragas T., Martin R., Angew. Chem. Int. Ed., 2018, 57(49), 15948—15982 |
20 | Yan S. S., Fu Q., Liao L. L., Sun G. Q., Ye J. H., Gong L., Bo⁃Xue Y. Z., Yu D. G., Coord. Chem. Rev., 2018, 374, 439—463 |
21 | Albini A., Fagnoni M., Handbook of Synthetic Photochemistry, Wiley⁃VCH, 2009 |
22 | Stephenson C. R. J., Yoon T., MacMillan D. W. C., Visible Light Photocatalysis in Organic Chemistry, Wiley⁃VCH, 2018 |
23 | Goddard J. P., Ollivier C., Fensterbank L., Acc. Chem. Res., 2016, 49(9), 1924—1936 |
24 | Romero N. A., Nicewicz D. A., Chem. Rev., 2016, 116(17), 10075—10166 |
25 | Liu Q., Wu L. Z., Natl. Sci. Rev., 2017, 4(3), 359—380 |
26 | Jiang H., Studer A., CCS Chem., 2019, 1(1), 38—49 |
27 | Ren X., Lu Z., Chin. J. Catal., 2019, 40(7), 1003—1019 |
28 | Chen J., Li Y., Mei L., Wu H., Chin. J. Org. Chem., 2019, 39(11), 3040—3050 |
29 | Chen Y., Lu L. Q., Yu D. G., Zhu C. J., Xiao W. J., Sci. China Chem., 2019, 62(1), 24—57 |
30 | Cheng W. M., Shang R., ACS Catal., 2020, 10(16), 9170—9196 |
31 | Zhou W. J., Wu X. D., Miao M., Wang Z. H., Chen L., Shan S. Y., Cao G. M., Yu D. G., Chem. Eur. J., 2020, 26(66), 15052—15064 |
32 | Reithmeier R., Bruckmeier C., Catalysts, 2012, 2(4), 544—571 |
33 | Gui Y. Y., Zhou W. J., Ye J. H., Yu D. G., ChemSusChem, 2017, 10(7), 1337—1340 |
34 | Hou J., Li J. S., Wu J., Asian J. Org. Chem., 2018, 7(8), 1439—1447 |
35 | Tan F., Yin G., Chin. J. Chem., 2018, 36(6), 545—554 |
36 | Cao Y., He X., Wang N., Li H. R., He L. N., Chin. J. Chem., 2018, 36(7), 644—659 |
37 | Yeung C. S., Angew. Chem. Int. Ed., 2019, 58(17), 5492—5502 |
38 | Zhang Z., Ye J. H., Ju T., Liao L. L., Huang H., Gui Y. Y., Zhou W. J., Yu D. G., ACS Catal., 2020, 10(19), 10871—10885 |
39 | Ye J. H., Ju T., Huang H., Liao L. L., Yu D. G., Acc. Chem. Res., 2021, 54(10), 2518—2531 |
40 | Guo Q., Liang F., Li X. B., Gao Y. J., Huang M. Y., Wang Y., Xia S. G., Gao X. Y., Gan Q. C., Lin Z. S., Tung C. H., Wu L. Z., Chem, 2019, 5(10), 2605—2616 |
41 | Li L., Li P. F., Wang B., Chem. J. Chinese Universities, 2020, 41(9), 1917—1932 |
李丽, 李鹏飞, 王博. 高等学校化学学报, 2020, 41(9), 1917—1932 | |
42 | Wang Y., Liu H., Han B., Chem. J. Chinese Universities, 2020, 41(11), 2393—2403 |
王艳燕, 刘会贞, 韩布兴. 高等学校化学学报, 2020, 41(11), 2393—2403 | |
43 | Chen Q., Li S., Xu H., Wang G., Qu Y., Zhu P., Wang D., Chin. J. Catal., 2020, 41(3), 514—523 |
44 | Liu J., Chen C., Zhang K., Zhang L., Chin. Chem. Lett., 2021, 32(1), 649—659 |
45 | Chen Q., Kuang Q., Xie Z., Acta Chim. Sinica, 2021, 79(1), 10—22 |
46 | Zhang J., Zhong D., Lu T., Acta Phys.⁃Chim. Sin., 2021, 37(5), 2008068 |
47 | Li C., Chen K., Wang X., Xue N., Yang H., Acta Phys.⁃Chim. Sin., 2021, 37(5), 2009101 |
48 | Li W., Xu W., Xie J., Yu S., Zhu C., Chem. Soc. Rev., 2018, 47(3), 654—667 |
49 | Zhang Z., Gong L., Zhou X. Y., Yan S. S., Li J., Yu D. G., Acta Chim. Sinica, 2019, 77(9), 783—793 |
50 | Lapidus A. L., Pirozhkov S. D., Koryakin A. A., Russ. Chem. Bull., 1978, 27, 2513—2515 |
51 | Takaya J., Iwasawa N., J. Am. Chem. Soc., 2008, 130(46), 15254—15255 |
52 | Li S., Yuan W., Ma S., Angew. Chem. Int. Ed., 2011, 50(11), 2578—2582 |
53 | Ohishi T., Zhang L., Nishiura M., Hou Z., Angew. Chem. Int. Ed., 2011, 50(35), 8114—8117 |
54 | Greenhalgh M. D., Thomas S. P., J. Am. Chem. Soc., 2012, 134(29), 11900—1193 |
55 | Li S., Ma S., Chem. Asian J., 2012, 7(10), 2411—2418 |
56 | Hayashi C., Hayashi T., Kikuchi S., Yamada T., Chem. Lett., 2014, 43(4), 565—567 |
57 | Wang X., Nakajima M., Martin R., J. Am. Chem. Soc., 2015, 137(28), 8924—8927 |
58 | Nogi K., Fujihara T., Terao J., Tsuji Y., J. Am. Chem. Soc., 2016, 138(17), 5547—5550 |
59 | Shao P., Wang S., Chen C., Xi C., Org. Lett., 2016, 18(9), 2050—2053 |
60 | Cao T., Yang Z., Ma S., ACS Catal., 2017, 7(7), 4504—4508 |
61 | Doi R., Abdullah I., Taniguchi T., Saito N., Sato Y., Chem. Commun., 2017, 53(55), 7720—7723 |
62 | Diccianni J. B., Heitmann T., Diao T., J. Org. Chem., 2017, 82(13), 6895—6903 |
63 | Xiong W., Shi F., Cheng R., Zhu B., Wang L., Chen P., Lou H., Wu W., Qi C., Lei M., Jiang H., ACS Catal., 2020, 10(14), 7968—7978 |
64 | Murata K., Numasawa N., Shimomaki K., Takaya J., Iwasawa N., Chem. Commun., 2017, 53(21), 3098—3101 |
65 | Murata K., Numasawa N., Shimomaki K., Takaya J., Iwasawa N., Front. Chem., 2019, 7, 371 |
66 | Meng Q. Y., Wang S., Huff G. S., König B., J. Am. Chem. Soc., 2018, 140(9), 3198—3201 |
67 | Ju T., Fu Q., Ye J. H., Zhang Z., Liao L. L., Yan S. S., Tian X. Y., Luo S. P., Li J., Yu D. G., Angew. Chem. Int. Ed., 2018, 57(42), 13897—13901 |
68 | Zhang Z., Zhu C. J., Miao M., Han J. L., Ju T., Song L., Ye J. H., Li J., Yu D. G., Chin. J. Chem., 2018, 36(5), 430—436 |
69 | Seo H., Liu A., Jamison T. F., J. Am. Chem. Soc., 2017, 139(40), 13969—13972 |
70 | Ye J. H., Miao M., Huang H., Yan S. S., Yin Z. B., Zhou W. J., Yu D. G., Angew. Chem. Int. Ed., 2017, 56(48), 15416—15420 |
71 | Huang H., Ye J. H., Zhu L., Ran C. K., Miao M., Wang W., Chen H., Zhou X. Y., Lan Y., Yu B., Yu D. G., CCS Chem., 2020, 3(6), 1746—1756 |
72 | Inoue S., Yokota K., Tatamidani H., Fukumoto Y., Chatani N., Org. Lett., 2006, 8(12), 2519—2522 |
73 | Yuan G. Q., Jiang H. F., Lin C., Liao S. J., Electrochim. Acta, 2008, 53(5), 2170—2176 |
74 | Liu J. W., Dong K. W., Franke R., Neumann H., Jackstell R., J. Am. Chem. Soc., 2018, 140(32), 10282—10288 |
75 | Senboku H., Komatsu H., Fujimura Y., Tokuda M., Synlett, 2001, 2001(3), 418 |
76 | Liao L. L., Wang Z. H., Cao K. G., Sun G. Q., Zhang W., Ran C. K., Li Y., Chen L., Cao G. M., Yu D. G., J. Am. Chem. Soc., 2022, 144(5), 2062—2068 |
77 | Li C. H., Yuan G. Q., Ji X. C., Wang X. J., Ye J. S., Jiang H. F., Electrochim. Acta, 2011, 56(3), 1529—1534 |
78 | Ju T., Zhou Y. Q., Cao K. G., Fu Q., Ye J. H., Sun G. Q., Liu X. F., Chen L., Liao L. L., Yu D. G., Nat. Catal., 2021, 4(4), 304—311 |
79 | Burkhart G., Hoberg H., Angew Chem. Int. Ed., 1982, 21(1),76—76 |
80 | Miao B., Zheng Y., Wu P., Li S., Ma S., Adv. Synth. Catal., 2017, 359(10), 1691—1707 |
81 | Nogi K., Fujihara T., Terao J., Tsuji Y., J. Am. Chem. Soc., 2016, 138(17), 5547—5550 |
82 | Yu D., Zhou F., Lim D. S., Su H., Zhang Y., ChemSusChem, 2017, 10(5) 836—841 |
83 | Hou J., Ee A., Feng W., Xu J. H., Zhao Y., Wu J., J. Am. Chem. Soc., 2018, 140(15), 5257—5263 |
84 | Xu Y., Shao Y., Ahlquist M. S. G., Yu H., Fu Y., J. Org. Chem., 2021, 86 (2), 1540—1548 |
85 | Shimomaki K., Murata K., Martin R., Iwasawa N., J. Am. Chem. Soc., 2017, 139(28), 9467—9470 |
86 | Meng Q. Y., Wang S., Konig B., Angew. Chem. Int. Ed., 2017, 56(43), 13426—13430 |
87 | Sahoo B., Bellotti P., Julia⁃Hernandez F, Meng Q. Y., Crespi S., Konig B., Martin R., Chem. Eur. J., 2019, 25(38), 9001—9005 |
88 | León T., Correa A., Martin R., J. Am. Chem. Soc., 2013, 135(4), 1221—1224 |
89 | Zhang S., Chen W. Q., Yu A., He L. N., ChemCatChem, 2015, 7(23), 3972—3977 |
90 | Jing K., Wei M. K., Yan S. S., Liao L. L., Niu Y. N., Luo S. P., Yu B., Yu D. G.. Chin. J. Catal., 2022, 43(7), 1667—1673 |
91 | Kiplinger J. L., Richmond T. G., Osterberg C. E., Chem. Rev., 1994, 94(2), 373—431 |
92 | Zhu C., Zhang Y. F., Liu Z. Y., Zhou L., Liu H., Feng C., Chem. Sci., 2019, 10(27), 6721—6726 |
93 | Yan S. S., Wu D. S., Ye J. H., Gong L., Zeng X., Ran C. K., Gui Y. Y., Li J., Yu D. G., ACS Catal., 2019, 9(8), 6987—6992 |
94 | Xie S. L., Cui X. Y., Gao X. T., Zhou F., Wu H. H., Zhou J., Org. Chem. Front., 2019, 6(21), 3678—3682 |
95 | Bo Z. Y., Yan S. S., Gao T. Y., Song L., Ran C. K., He Y., Zhang W., Cao G. M., Yu D. G., Chin. J. Catal., 2022, DOI: 10.1016/S1872⁃2067(22) |
96 | Yan S. S., Liu S. H., Chen L., Bo Z. Y., Jing K., Gao T. Y., Yu B., Lan Y., Luo S. P., Yu D. G., Chem, 2021, 7(11), 3099—3113 |
97 | Shimomaki K., Nakajima T., Caner J., Toriumi N., Iwasawa N., Org. Lett., 2019, 21(12), 4486—4489 |
98 | Bhunia S. K., Das P., Nandi S., Jana R., Org. Lett., 2019, 21(12), 4632—4637 |
99 | Jin Y., Toriumi N., Iwasawa N., ChemSusChem, 2022, 15(3), DOI:10.1002/cssc.202102095 |
100 | Ran C. K., Niu Y. N., Song L., Wei M. K., Cao Y. F., Luo S. P., Yu Y. M., Liao L. L., Yu D. G., ACS Catal., 2022, 12(1), 18—24 |
101 | Li W. D., Wu Y., Li S. J., Jiang Y. Q., Li Y. L., Lan Y., Xia J. B., J. Am. Chem. Soc., 2022, 144(19), 8551—8559 |
102 | Ouyang K., Hao W., Zhang W. X., Xi Z., Chem. Rev., 2015, 115(21), 12045—12090 |
103 | Wang Q., Su Y., Li L., Huang H., Chem. Soc. Rev., 2016, 45(5), 1257—1272 |
104 | Moragas T., Gaydou M., Martin R., Angew. Chem. Int. Ed., 2016, 55(16), 5053-5057 |
105 | Wang Y., Li F., Zeng Q., Acta Chim. Sinica, 2022, 80(3), 386—394 |
106 | Liao L. L., Cao G. M., Ye J. H., Sun G. Q., Zhou W. J., Gui Y. Y., Yan S. S., Shen G., Yu D. G., J. Am. Chem. Soc., 2018, 140(50), 17338—17342 |
107 | Miao M., Liao L. L., Cao G. M., Zhou W. J., Yu D. G., Sci. China Chem., 2019, 62(11), 1519—1524 |
108 | Lee K. N., Ngai M. Y., Chem. Commun., 2017, 53(98), 13093—13112 |
109 | Takeda M., Mitsui A., Nagao K., Ohmiya H., J. Am. Chem. Soc., 2019, 141 (53), 3664—3669 |
110 | Yuasa A., Nagao K., Ohmiya H., Beilstein J. Org. Chem., 2020, 16, 185—189 |
111 | Fan X., Gong X., Ma M. Y., Wang R., Walsh P. J., Nat. Commun., 2018, 9, 4936 |
112 | Yu X. Y., Zhao Q. Q., Chen J., Xiao W. J., Chen J. R., Acc. Chem. Res., 2020, 53(5), 1066—1083 |
113 | Jiang Y. X., Chen L., Ran C. K., Song L., Zhang W., Liao L. L., Yu D. G., ChemSusChem, 2020, 13(23), 6312—6317 |
114 | Masashi K., Hirofumi A., Yuji W., Shozo Y., Chem. Lett., 1992, 21(11), 2113—2114 |
115 | Masada K., Kusumoto S., Nozaki K., Org. Lett., 2020, 22(13), 4922—4926 |
116 | Cao G. M., Hu X. L., Liao L. L., Yan S. S., Song L., Chruma J. J., Gong L., Yu D. G., Nat. Commun., 2021, 12, 3306 |
117 | Okumura S., Uozumi Y., Org. Lett., 2021, 23(18), 7194—7198 |
118 | Oderinde M. S., Mao E., Ramirez A., Pawluczyk J., Jorge C., Cornelius L. A. M., Kempson J., Vetrichelvan M., Pitchai M., Gupta A., Gupta A. K., Meanwell N. A., Mathur A., Dhar T. G. M., J. Am.Chem. Soc., 2020, 142(6), 3094—3103 |
119 | Tazuke S., Ozawa H., J. Chem. Soc. Chem. Commun., 1975, 7, 237—238 |
120 | Zhou W. J., Wang Z. H., Liao L. L., Jiang Y. X., Cao K. G., Ju T., Li Y., Cao G. M., Yu D. G., Nat. Commun., 2020, 11, 3263 |
121 | Gao Y., Wang H., Chi Z., Yang L., Zhou C., Li G., CCS Chem., 2021, 4(5), 1565—1576 |
122 | Ye J. H., Zhu L., Yan S. S., Miao M., Zhang X. C., Zhou W. J., Li J., Lan Y., Yu D. G., ACS Catal., 2017, 7(12), 8324—8330 |
123 | Zhang Z., Zhou X. Y., Wu J. G., Song L., Yu D. G., Green Chem., 2020, 22(1), 28—32 |
124 | Yi Y., Xi C., Chin. J. Catal., 2022, 43(7), 1652—1656 |
125 | Harris T. M., Harris C. M., J. Org. Chem., 1966, 31(4),1032—1035 |
126 | Zhang W. Z., Liu S., Lu X. B., Beilstein J. Org. Chem., 2015, 11, 906—912 |
127 | Zhang W. Z., Yang M. W., Lu X. B., Green Chem., 2016, 18(15), 4181—4184 |
128 | Masuda Y., Ishida N. , Murakami M., J. Am. Chem. Soc., 2015, 137(44), 14063—14066 |
129 | Ishida N. , Masuda Y. , Imamura Y. , Yamazaki K., Murakami M., J. Am. Chem. Soc., 2019, 141(50), 19611—19615 |
130 | Meng Q., Schirmer T., Berger A., Donabauer K., König B., J. Am. Chem. Soc., 2019, 141(29), 11393—11397 |
131 | Yatham V. R., Shen Y., Martin R., Angew. Chem. Int. Ed., 2017, 56(36), 10915—10919 |
132 | Wang H., Gao Y., Zhou C., Li G., J. Am. Chem. Soc., 2020, 142(18), 8122—8129 |
133 | Bai J., Li M., Zhou C., Sha Y., Cheng J., Sun J., Sun S., Org. Lett., 2021, 23(24), 9654—9658 |
134 | Niu Y. N., Jin X. H., Liao L. L., Huang H., Yu B., Yu Y. M., Yu D. G., Sci. China Chem., 2021, 64(7), 1164—1169 |
135 | Zhang B., Yi Y., Wu Z. Q., Chen C., Xi C., Green Chem., 2020, 22(18), 5961—5965 |
136 | Zhou C., Li M., Sun J., Cheng J., Sun S., Org. Lett., 2021, 23(8), 2895—2899 |
137 | Liao L. L., Cao G. M., Jiang Y. X., Jin X. H., Hu X. L., Chruma J. J., Sun G. Q., Gui Y. Y., Yu D. G., J. Am. Chem. Soc., 2021, 143(7), 2812—2821 |
138 | Fu Q., Bo Z. Y., Ye J. H., Ju T., Huang H., Liao L. L., Yu D. G., Nat. Commun., 2019, 10, 3592 |
139 | Hou J., Ee A., Cao H., Ong H. W., Xu J. H., Wu J., Angew. Chem. Int. Ed., 2018, 57(52), 17220—17224 |
140 | Fan Z., Yi Y., Chen S., Xi C., Org. Lett., 2021, 23(6), 2303—2307 |
141 | Song L., Fu D. M., Chen L., Jiang Y. X., Ye J. H., Zhu L., Lan Y., Fu Q., Yu D. G., Angew. Chem. Int. Ed., 2020, 59(47), 21121—21128 |
142 | Takahashi K., Sakurazawa Y., Iwai A., Iwasawa N., ACS Catal., 2022, 12(7), 3776—3781 |
143 | Zhu X. Y., Ran C. K., Wen M., Guo G. L., Y Liu., Liao L. L., Li Y. Z., Li M. L., Yu D. G., Chin. J. Chem., 2021, 39(12), 3231—3237 |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | LIU Suyu, DING Fei, LI Qian, FAN Chunhai, FENG Jing. Azobenzene-integrated DNA Nanomachine [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220122. |
[3] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[4] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[5] | GUO Zhiqiang, YANG Boru, XI Chanjuan. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220199. |
[6] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[7] | HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220222. |
[8] | SONG Dewen, WANG Mingwang, WANG Yani, JIAO Zhenmei, NING Hui, WU Mingbo. Progress of CO2 Electroreduction to Oxalic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220248. |
[9] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[10] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[11] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[12] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[13] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[14] | ZHANG Wenmeng, LI Mengqin, HOU Zhen, CHEN Dongyang. Synthesis and Coating Properties of Carboxylated Fluorinated Poly(arylene ether)s [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210604. |
[15] | ZHANG Xiaofei, LIU Jiaxin. Visible Light Induced Cyclization of O-Alkenylcarboxanilide to 2-Quinolinone [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||