Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (7): 20220222.doi: 10.7503/cjcu20220222
• Review • Previous Articles Next Articles
HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang(), SHI Feng(
)
Received:
2022-04-09
Online:
2022-07-10
Published:
2022-05-10
Contact:
CUI Xinjiang,SHI Feng
E-mail:xinjiangcui@licp.cas.cn;fshi@licp.cas.cn
Supported by:
CLC Number:
TrendMD:
HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals[J]. Chem. J. Chinese Universities, 2022, 43(7): 20220222.
Year | Catalyst | Reaction condition | EC conv.(%) | MeOH sel.(%) | EG sel.(%) | Stability/h | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | PH2/MPa | Solvent | |||||||
2012 | Ru?PNP | 140 | 0.5 | 5 | THF | 99 | 99 | 99 | — | [ |
2016 | Ru?NHC | 130 | 12 | 5 | 1,4?Dioxane | 99 | 42 | 92 | — | [ |
2017 | Ru?NHC | 140 | 24 | 5 | THF | 99 | 90 | 99 | — | [ |
2018 | Mn?PNN | 110 | 50 | 5 | Toluene | 99 | 99 | 99 | — | [ |
2015 | CuCr2O4 | 180 | 12 | 5 | THF | 99 | 60 | 92 | 48 | [ |
2015 | Cu?SiO2?PG | 160 | 10 | 6 | THF | 99 | 95 | 97 | 80 | [ |
2015 | Cu/HMS | 180 | — | 3 | 1,4?Dioxane | 99 | 74 | 99 | 100 | [ |
2018 | Cu/SiO2?β?P | 180 | 4 | 5 | THF | 53 | 61 | 99 | 20 | [ |
2018 | Cu/MCM?41 | 180 | — | 3 | 1,4?Dioxane | 98 | 71 | 96 | 60 | [ |
2021 | Cu?MoO x /SiO2 | 180 | — | 4 | 1,4?Dioxane | 99 | 89 | 99 | 150 | [ |
Table 1 Catalytic system of EC hydrogenation
Year | Catalyst | Reaction condition | EC conv.(%) | MeOH sel.(%) | EG sel.(%) | Stability/h | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | PH2/MPa | Solvent | |||||||
2012 | Ru?PNP | 140 | 0.5 | 5 | THF | 99 | 99 | 99 | — | [ |
2016 | Ru?NHC | 130 | 12 | 5 | 1,4?Dioxane | 99 | 42 | 92 | — | [ |
2017 | Ru?NHC | 140 | 24 | 5 | THF | 99 | 90 | 99 | — | [ |
2018 | Mn?PNN | 110 | 50 | 5 | Toluene | 99 | 99 | 99 | — | [ |
2015 | CuCr2O4 | 180 | 12 | 5 | THF | 99 | 60 | 92 | 48 | [ |
2015 | Cu?SiO2?PG | 160 | 10 | 6 | THF | 99 | 95 | 97 | 80 | [ |
2015 | Cu/HMS | 180 | — | 3 | 1,4?Dioxane | 99 | 74 | 99 | 100 | [ |
2018 | Cu/SiO2?β?P | 180 | 4 | 5 | THF | 53 | 61 | 99 | 20 | [ |
2018 | Cu/MCM?41 | 180 | — | 3 | 1,4?Dioxane | 98 | 71 | 96 | 60 | [ |
2021 | Cu?MoO x /SiO2 | 180 | — | 4 | 1,4?Dioxane | 99 | 89 | 99 | 150 | [ |
Year | Catalyst | Reaction condition | Conv.(%) | Sel.(%) | Stability | Ref. | ||
---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | P/MPa | ||||||
2002 | Montmorillonite: Ni?Na?Li | 150 | 4 | — | 71.2 | 92.7 | — | [ |
2004 | n?Bu2N?MCM?41 | 150 | 3 | — | 42 | — | — | [ |
2006 | Amberlyst A?21 | 120 | — | — | 96 | — | — | [ |
2007 | MgO?CeO2(molar fraction | 150 | 3 | 0.2 MPa N2 | 64 | 95 | — | [ |
of Ce:24.4%) | ||||||||
2009 | Au/CeO2 | 140 | 6 | — | 40 | 47 | 4 | [ |
2010 | KF/Al2O3 | 80 | 4 | — | 70.9 | 98.1 | — | [ |
2011 | THA?MS41 | 180 | 4 | — | 78.4 | — | 4 | [ |
2011 | ZnO?Y2O3 | 65 | 1 | — | 55 | 98 | 6 | [ |
2013 | MgO@meso?SiO2 | 140 | — | — | 90 | — | — | [ |
2014 | CeO2?meso?400 | 140 | 2 | 0.6 MPa CO2 | 76 | 96 | 5 | [ |
2015 | HT?10 La?C | 60 | 4 | — | 73.8 | 100 | 6 | [ |
2015 | Zn?g?C3N4 | 160 | 4 | — | 84.2 | 98.9 | 5 | [ |
2017 | MgO/g?C3N4 | 140 | 4 | — | 81 | 87 | 4 | [ |
2017 | Mg3Fe0.85Ce0.15 LDHs | 70 | 3 | — | 87 | 100 | 7 | [ |
2017 | NiAl?CO3 LDHs | 90 | 4 | — | 83 | 81 | 3 | [ |
2018 | Ca?Al?F- | 60 | 2 | — | 65.9 | 95.3 | — | [ |
2018 | SrO/CeO2 | 150 | 5 | — | 82 | 87 | 4 | [ |
2017 | CeO2?R | 140 | 3 | 0.6 MPa N2 | 87.5 | 81.1 | 5 | [ |
2019 | Fe?Mn double metal cyanide | 140 | 3 | — | 49.4 | 96.1 | 4 | [ |
(molar ratio of Fe/Mn=1∶8) | ||||||||
2019 | GO?[Ap?im]OH | — | 4 | — | 94.5 | 99.9 | 6 | [ |
2021 | Poly(urea?IL)?5% | 110 | 6 | — | 82 | 97.5 | 5 | [ |
Table 2 Catalytic system of transesterification reaction between cyclic carbonate and alcohol
Year | Catalyst | Reaction condition | Conv.(%) | Sel.(%) | Stability | Ref. | ||
---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | P/MPa | ||||||
2002 | Montmorillonite: Ni?Na?Li | 150 | 4 | — | 71.2 | 92.7 | — | [ |
2004 | n?Bu2N?MCM?41 | 150 | 3 | — | 42 | — | — | [ |
2006 | Amberlyst A?21 | 120 | — | — | 96 | — | — | [ |
2007 | MgO?CeO2(molar fraction | 150 | 3 | 0.2 MPa N2 | 64 | 95 | — | [ |
of Ce:24.4%) | ||||||||
2009 | Au/CeO2 | 140 | 6 | — | 40 | 47 | 4 | [ |
2010 | KF/Al2O3 | 80 | 4 | — | 70.9 | 98.1 | — | [ |
2011 | THA?MS41 | 180 | 4 | — | 78.4 | — | 4 | [ |
2011 | ZnO?Y2O3 | 65 | 1 | — | 55 | 98 | 6 | [ |
2013 | MgO@meso?SiO2 | 140 | — | — | 90 | — | — | [ |
2014 | CeO2?meso?400 | 140 | 2 | 0.6 MPa CO2 | 76 | 96 | 5 | [ |
2015 | HT?10 La?C | 60 | 4 | — | 73.8 | 100 | 6 | [ |
2015 | Zn?g?C3N4 | 160 | 4 | — | 84.2 | 98.9 | 5 | [ |
2017 | MgO/g?C3N4 | 140 | 4 | — | 81 | 87 | 4 | [ |
2017 | Mg3Fe0.85Ce0.15 LDHs | 70 | 3 | — | 87 | 100 | 7 | [ |
2017 | NiAl?CO3 LDHs | 90 | 4 | — | 83 | 81 | 3 | [ |
2018 | Ca?Al?F- | 60 | 2 | — | 65.9 | 95.3 | — | [ |
2018 | SrO/CeO2 | 150 | 5 | — | 82 | 87 | 4 | [ |
2017 | CeO2?R | 140 | 3 | 0.6 MPa N2 | 87.5 | 81.1 | 5 | [ |
2019 | Fe?Mn double metal cyanide | 140 | 3 | — | 49.4 | 96.1 | 4 | [ |
(molar ratio of Fe/Mn=1∶8) | ||||||||
2019 | GO?[Ap?im]OH | — | 4 | — | 94.5 | 99.9 | 6 | [ |
2021 | Poly(urea?IL)?5% | 110 | 6 | — | 82 | 97.5 | 5 | [ |
Year | Catalyst | Reaction condition | Disubstituted ureas yield(%) | Stability | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | PN2/MPa | Solvent | Reactant | |||||
2005 | CaO | 100 | 3 | — | — | Propylamine | 68 | 3 | [ |
2005 | CaO | 100 | 3 | — | — | Butylamine | 78 | 3 | [ |
2005 | CaO | 150 | 3 | — | — | Cyclohexylamine | 59 | 3 | [ |
2005 | CaO | 150 | 3 | — | — | Benzylamine | 55 | 3 | [ |
2007 | MgO | 80 | 6 | — | — | Ethanolamine | 83 | 4 | [ |
2007 | MgO | 80 | 6 | — | — | Ethylenediamine | 85 | 4 | [ |
2008 | Cs2CO3 | 90 | 0.3 | — | — | Propylamine | 87 | — | [ |
2008 | Cs2CO3 | 90 | 0.3 | — | — | Butylamine | 93 | — | [ |
2008 | Cs2CO3 | 120 | 0.3 | — | — | Cyclohexylamine | 83 | — | [ |
2008 | Cs2CO3 | 120 | 0.3 | — | — | Benzylamine | 76 | — | [ |
2006 | K2CO3 | 80 | 5 | — | DMF | Ethanolamine | 93 | — | [ |
2009 | DABCO | 100 | 5 | 0.1 | — | Benzylamine | 95 | — | [ |
Table 3 Catalytic system of transesterification reaction between EC and amine
Year | Catalyst | Reaction condition | Disubstituted ureas yield(%) | Stability | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|
t/℃ | Time/h | PN2/MPa | Solvent | Reactant | |||||
2005 | CaO | 100 | 3 | — | — | Propylamine | 68 | 3 | [ |
2005 | CaO | 100 | 3 | — | — | Butylamine | 78 | 3 | [ |
2005 | CaO | 150 | 3 | — | — | Cyclohexylamine | 59 | 3 | [ |
2005 | CaO | 150 | 3 | — | — | Benzylamine | 55 | 3 | [ |
2007 | MgO | 80 | 6 | — | — | Ethanolamine | 83 | 4 | [ |
2007 | MgO | 80 | 6 | — | — | Ethylenediamine | 85 | 4 | [ |
2008 | Cs2CO3 | 90 | 0.3 | — | — | Propylamine | 87 | — | [ |
2008 | Cs2CO3 | 90 | 0.3 | — | — | Butylamine | 93 | — | [ |
2008 | Cs2CO3 | 120 | 0.3 | — | — | Cyclohexylamine | 83 | — | [ |
2008 | Cs2CO3 | 120 | 0.3 | — | — | Benzylamine | 76 | — | [ |
2006 | K2CO3 | 80 | 5 | — | DMF | Ethanolamine | 93 | — | [ |
2009 | DABCO | 100 | 5 | 0.1 | — | Benzylamine | 95 | — | [ |
1 | Novotnik B., Nandy A., Venkatesan S. V., Radovic J. R., De la Fuente J., Nejadi S., Silva R. C., Kouris A., Thangadurai V., Bryant S., Karan K., Shor R., Strous M., Larter S. R., Rev. Environ. Sci. Bio., 2020, 19(1), 217—240 |
2 | Hook M., Tang X., Energy Policy, 2013, 52, 797—809 |
3 | Hansen J., Kharecha P., Sato M., Masson⁃Delmotte V., Ackerman F., Beerling D. J., Hearty P. J., Hoegh⁃Guldberg O., Hsu S. L., Parmesan C., Rockstrom J., Rohling E. J., Sachs J., Smith P., Steffen K., Van Susteren L., von Schuckmann K., Zachos J. C., Plos One, 2013, 8(12), e81648 |
4 | Bilgili F., Renew. Sust. Energ. Rev., 2012, 16(7), 5349—5354 |
5 | Jansen E., Christensen J. H., Dokken T., Nisancioglu K. H., Vinther B. M., Capron E., Guo C. C., Jensen M. F., Langen P. L., Pedersen R. A., Yang S. T., Bentsen M., Kjaer H. A., Sadatzki H., Sessford E., Stendel M., Nat. Clim. Chang., 2020, 10(8), 714—721 |
6 | Chen L., He Z., Du J., Yang J., Zhu X., Acta Prataculturae Sinica, 2015, 24(11), 183—194 |
7 | Xia J. Y., Chen J. Q., Piao S. L., Ciais P., Luo Y. Q., Wan S. Q., Nat. Geosci., 2014, 7(3), 173—180 |
8 | Gao K. S., Zhang Y., Hader D. P., J. Appl. Phycol., 2018, 30(2), 743—759 |
9 | van den Bergh J., Nat. Clim. Chang., 2017, 7(2), 107—112 |
10 | Liu L. Q., Liu C. X., Sun Z. Y., Renew. Sust. Energ. Rev., 2011, 15(6), 2895—2903 |
11 | Nicholls R. J., Cazenave A., Science, 2010, 328(5985), 1517—1520 |
12 | Zhao H. X., Wu S. H., Jiang L. G., J. Appl. Ecol., 2007, 18(2), 445—450 |
13 | Barnett T. P., Adam J. C., Lettenmaier D. P., Nature, 2005, 438(7066), 303—309 |
14 | Wang J., Rodrigues J. F. D., Hu M., Behrens P., Tukker A., Renew. Sust. Energ. Rev., 2019, 116, 109433 |
15 | Zhang L., Gan M., Wang Y., Fu X., Liu S., Li X., Ther. Power Gen., 2021, 50(1), 24—32 |
16 | Noh S., Trans. Korean Hydrogen New Energy Soc., 2019, 30(4), 297—302 |
17 | Mosaffa A. H., Farshi L. G., Energ. Convers. Manage., 2020, 207, 112542 |
18 | Meng Q. S., Han J. T., Kong L. J., Liu H., Zhang T., Yu Z. T., Int. J. Hydrog. Energy, 2017, 42(7), 4673—4678 |
19 | Liu J., Chen H. S., Xu Y. J., Wang L., Tan C. Q., Renew. Energ., 2014, 64, 43—51 |
20 | Ahmed R., Liu G. J., Yousaf B., Abbas Q., Ullah H., Ali M. U., J. Clean. Prod., 2020, 242, 118409 |
21 | Gonzalez⁃Salazar M. A., Int. J. Greenh. Gas Con., 2015, 34, 106—116 |
22 | Sharifian R., Wagterveld R. M., Digdaya I. A., Xiang C., Vermaas D. A., Energy Environ. Sci., 2021, 14(2), 781—814 |
23 | Shen X. H., Du H. B., Mullins R. H., Kommalapati R. R., Energy Technol., 2017, 5(6), 822—833 |
24 | Wang J. Y., Yang Y., Jia Q. M., Shi Y. Z., Guan Q. Q., Yang N., Ning P., Wang Q., ChemSusChem, 2019, 12(10), 2055—2082 |
25 | Wang W. J., Zhouab M., Yuan D. Q., J. Mater. Chem. A, 2017, 5(4), 1334—1347 |
26 | Yamada H., Polym. J., 2021, 53(1), 93—102 |
27 | Zhao H. Y., Luo X. N., Zhang H. J., Sun N. N., Wei W., Sun Y. H., Greenh. Gases, 2018, 8(1), 11—36 |
28 | Wang X., Zhu L., Zhuo Y., Zhu Y., Wang S., ACS Sustain. Chem. Eng., 2019, 7(17), 14647—14660 |
29 | Dai X. C., Wang B., Wang A. Q., Shi F., Chinese J. Catal., 2019, 40(8), 1141—1146 |
30 | Zheng Y., Zhang W., Li Y., Chen J., Yu B., Wang J., Zhang L., Zhang J., Nano Energy, 2017, 40, 512—539 |
31 | Ling L. L., Yang W., Yan P., Wang M., Jiang H. L., Angew. Chem. Int. Ed., 2022, e20211639 |
32 | Zhang Z., Yin H., Yu G., He S., Kang J., Liu Z., Cheng K., Zhang Q., Wang Y., J. Catal., 2021, 395, 350—361 |
33 | Wu Q., Shen C., Rui N., Sun K., Liu C. J., J. CO2 Util., 2021, 53, 101720 |
34 | Fan T., Liu H., Shao S., Gong Y., Li G., Tang Z., J. Phys. Chem. Lett., 2021, 12(43), 10486—10496 |
35 | Das A., Mandal S. C., Pathak B., Catal. Sci. Technol., 2021, 11(4), 1375—1385 |
36 | Badoga S., Martinelli M., Gnanamani M. K., Koh Y., Shafer W. D., Catal. Commun., 2021, 152, 106284 |
37 | Pan Y., Guan C., Li H., Chakraborty P., Zhou C., Huang K. W., Dalton Trans., 2019, 48(34), 12812—12816 |
38 | Xiong Z., Kuang C. C., Lin K. Y., Lei Z., Chen X., Gong B., Yang J., Zhao Y., Zhang J., Xia B., Wu J. C. S., J. CO2 Util., 2018, 24, 500—508 |
39 | Schneck F., Schendzielorz F., Hatami N., Finger M., Wuertele C., Schneider S., Angew. Chem. Int. Ed., 2018, 57(44), 14482—14487 |
40 | Song B., Qin A., Tang B. Z., Cell Rep., 2022, 3(2), 100719 |
41 | Atsbha T. A., Yoon T., Seongho P., Lee C. J., J. CO2 Util., 2021, 44, 101413 |
42 | Zhao X., Yang S., Ebrahimiasl S., Arshadi S., Hosseinian A., J. CO2 Util., 2019, 33, 37—45 |
43 | Arshadi S., Banaei A., Ebrahimiasl S., Monfared A., Vessally E., RSC Adv., 2019, 9(34), 19465—19482 |
44 | Wang H., Xin Z., Li Y., Topics Curr. Chem., 2017, 375(2), 46 |
45 | Olajire A. A., J. CO2 Util., 2013, 3/4, 74—92 |
46 | North M., Pasquale R., Young C., Green Chem., 2010, 12(9), 1514—1539 |
47 | Wang X. G., Li L. Q., Tang L., Gao Z., Liu Z. Y., Chem. Eng. Prog., 2006, 25(6), 613—618 |
48 | Fujita S., Arai M., J. Japan Pet. Inst., 2005, 48(2), 67—75 |
49 | Leitner W., Angew. Chem. Int. Ed., 1995, 34(20), 2207—2221 |
50 | Kunkes E. L., Studt F., Abild⁃Pedersen F., Schlögl R., Behrens M., J. Catal., 2015, 328, 43—48 |
51 | Xie S. Q., Zhang W. L., Lan X. Y., Lin H. F., ChemSusChem, 2020, 13(23), 6141—6159 |
52 | Wang J., Li G., Li Z., Tang C., Feng Z., An H., Liu H., Liu T., Li C., Sci. Adv., 2017, 3(10), e1701290 |
53 | Witoon T., Chalorngtham J., Dumrongbunditkul P., Chareonpanich M., Limtrakul J., Chem. Eng. J., 2016, 293, 327—336 |
54 | Naik S. P., Ryu T., Bui V., Miller J. D., Drinnan N. B., Zmierczak W., Chem. Eng. J., 2011, 167(1), 362—368 |
55 | Kusama H., Okabe K., Sayama K., Arakawa H., Catal. Today, 1996, 28(3), 261—266 |
56 | Leino E., Mäki⁃Arvela P., Eta V., Murzin D. Y., Salmi T., Mikkola J. P., Appl. Catal. A: Gen., 2010, 383(1/2), 1—13 |
57 | Schaffner B., Schaffner F., Verevkin S. P., Borner A., Chem. Rev., 2010, 110( 8), 4554—4581 |
58 | Dang H. T., Kang G. J., Yoo E. S., Hong J., Choi J. S., Kim H. S., Chung H. Y., Jung J. H., Bioorg. Med. Chem., 2011, 19(4), 1520—1527 |
59 | Cui X., Dai X., Surkus A. E., Junge K., Kreyenschulte C., Agostini G., Rockstroh N., Beller M., Chinese J. Catal., 2019, 40(11), 1679—1685 |
60 | Honda M., Tamura M., Nakao K., Suzuki K., Nakagawa Y., Tomishige K., ACS Catal., 2014, 4(6), 1893—1896 |
61 | Gao J., Zhong S. H., Prog. Chem., 2002, 14(2), 107—112 |
62 | Du Z., Yao J., Zen Y., Wang Y., Wang G., Nat. Prod. Rep., 2003, 28(4), 22—29 |
63 | Zhou W., Ma Z. Y., Shi D. C., Li Z., Zhang D. S., Nat. Prod. Rep., 2009, 34(2), 70—78 |
64 | Shen W., Liu D., Liu X., Modern Chem. Ind., 2012, 32(7), 34—38,40 |
65 | Ajiro H., Haramiishi Y., Chanthaset N., Akashi M., Polym. J., 2016, 48(7), 751—760 |
66 | Tominaga Y., Polym. J., 2017, 49(3), 291—299 |
67 | Chaudhari M. I., Muralidharan A., Pratt L. R., Rempe S. B., Topics Curr. Chem., 2018, 376(2), 7 |
68 | Xing L., Zheng X., Schroeder M., Alvarado J., Cresce A. V. W., Xu K., Li Q., Li W., ACC. Chem. Res., 2018, 51(2), 282—289 |
69 | Chu J., Chang J., Luo Z., Hou M., Li Q., Chem. Eng. Prog., 2021, 40(1), 195—204 |
70 | Gao Y., Yang Y., Li A., Wang M., Lyu J., Wang Y., Ma X., Proc. Chinese Soc. Electr. Eng., 2021, 41(4), 1217—1226 |
71 | Behrens M., Schlögl R., Z. Anorg. Allg. Chem., 2013, 639(15), 2683—2695 |
72 | Razali N. A. M., Lee K. T., Bhatia S., Mohamed A. R., Renew. Sust. Energ. Rev., 2012, 16(7), 4951—4964 |
73 | Han Z. B., Rong L. C., Wu J., Zhang L., Wang Z., Ding K. L., Angew. Chem. Int. Ed., 2012, 51(52), 13041—13045 |
74 | Wu X., Ji L., Ji Y., Elageed E. H. M., Gao G. H., Catal. Commun., 2016, 85, 57—60 |
75 | Chen J., Zhu H., Chen J., Le Z. G., Tu T., Chem. Asian. J., 2017, 12(21), 2809—2812 |
76 | Kumar A., Janes T., Espinosa⁃Jalapa N. A., Milstein D., Angew. Chem. Int. Ed. Engl., 2018, 57(37), 12076—12080 |
77 | Lian C., Ren F. M., Liu Y. X., Zhao G. F., Ji Y. J., Rong H. P., Jia W., Ma L., Lu H. Y., Wang D. S., Li Y. D., Chem. Commun., 2015, 51(7), 1252—1254 |
78 | Liu H., Huang Z., Han Z., Ding K., Liu H., Xia C., Chen J., Green Chem., 2015, 17(8), 4281—4290 |
79 | Chen X., Cui Y. Y., Wen C., Wang B., Dai W. L., Chem. Commun., 2015, 51(72), 13776—13778 |
80 | Zhang C., Wang L., Liu J., Yang Y., He P., Cao Y., Chen J., Li H., ChemCatChem, 2018, 10(20), 4617—4628 |
81 | Deng F. L., Li N., Tang S. Y., Liu C. J., Yue H. R., Liang B., Chem. Eng. J., 2018, 334, 1943—1953 |
82 | Song T., Qi Y., Jia A., Ta N., Lu J., Wu P., Li X., J. Catal., 2021, 399, 98—110 |
83 | Balaraman E., Gunanathan C., Zhang J., Shimon L. J. W., Milstein D., Nat. Chem., 2011, 3(8), 609—614 |
84 | Rui N., Zhang F., Sun K., Liu Z., Xu W., Stavitski E., Senanayake S. D., Rodriguez J. A., Liu C. J., ACS Catal., 2020, 10(19), 11307—11317 |
85 | Tamura M., Kitanaka T., Nakagawa Y., Tomishige K., ACS Catal., 2016, 6(1), 376—380 |
86 | Tuteja J., Choudhary H., Nishimura S., Ebitani K., ChemSusChem, 2014, 7(1), 96—100 |
87 | Chen W., Song T. Y., Tian J. X., Wu P., Li X. H., Catal. Sci. Technol., 2019, 9(23), 6749—6759 |
88 | Bhanage B. M., Fujita S. I., He Y., Ikushima Y., Shirai M., Torii K., Arai M., Catal. Lett., 2002, 83(3/4), 137—141 |
89 | Feng X. J., Lu X. B., He R., Appl. Catal. A: Gen., 2004, 272(1/2), 347—352 |
90 | Dhuri S. M., Mahajani V. V., J. Chem. Technol. Biot., 2006, 81(1), 62—69 |
91 | Abimanyu H., Kim C. S., Ahn B. S., Yoo K. S., Catal. Lett., 2007, 118(1/2), 30—35 |
92 | Juárez R., Corma A., García H., Green Chem., 2009, 11(7), 949—952 |
93 | Murugan C., Bajaj H. C., Jasra R. V., Catal. Lett., 2010, 137(3/4), 224—231 |
94 | Kim D. W., Lim D. O., Cho D. H., Koh J. C., Park D. W., Catal. Today, 2011, 164(1), 556—560 |
95 | Wang L., Wang Y., Liu S., Lu L., Ma X., Deng Y., Catal. Commun., 2011, 16(1), 45—49 |
96 | Cui Z. M., Chen Z., Cao C. Y., Song W. G., Jiang L., Chem. Commun., 2013, 49(54), 6093—6095 |
97 | Xu J., Long K. Z., Wu F., Xue B., Li Y. X., Cao Y., Appl. Catal. A: Gen., 2014, 484, 1—7 |
98 | Unnikrishnan P., Srinivas D., J. Mol. Catal. A: Chem., 2015, 398, 42—49 |
99 | Xu J., Long K. Z., Wang Y., Xue B., Li Y. X., Appl. Catal. A: Gen., 2015, 496, 1—8 |
100 | Xu J., Chen Y., Ma D., Shang J. K., Li Y. X., Catal. Commun., 2017, 95, 72—76 |
101 | Nivangune N. T., Ranade V. V., Kelkar A. A., Catal. Lett., 2017, 147(10), 2558—2569 |
102 | Gandara⁃Loe J., Jacobo⁃Azuara A., Silvestre⁃Albero J., Sepúlveda⁃Escribano A., Ramos⁃Fernández E. V., Catal. Today, 2017, 296, 254—261 |
103 | Liao Y., Li F., Pu Y., Wang F., Dai X., Zhao N., Xiao F., RSC Adv., 2018, 8(2), 785—791 |
104 | Kumar P., Kaur R., Verma S., Srivastava V. C., Mishra I. M., Fuel, 2018, 220, 706—716 |
105 | Zheng H., Hong Y., Xu J., Xue B., Li Y. X., Catal. Commun., 2018, 106, 6—10 |
106 | Song Z., Subramaniam B., Chaudhari R. V., ACS Sustain. Chem. Eng., 2019, 7(6), 5698—5710 |
107 | Zhang W. H., Zhou Y. C., Du C. H., Gao M., Liu S. S., Liu P., Li Y. X., React. Kinet. Mech. Cat., 2019, 127(2), 715—726 |
108 | Hu H., Wang X., Chen B., Gao G., ChemCatChem, 2021, 13(18), 3945—3952 |
109 | Huang S., Yan B., Wang S., Ma X., Chem. Soc. Rev., 2015, 44(10), 3079—3116 |
110 | Cui H., Wang T., Wang F., Gu C., Wang P., Dai Y., J. Supercrit. Fluid., 2004, 30(1), 63—69 |
111 | Ju H. Y., Manju M. D., Kim K. H., Park S. W., Park D. W., Korean J. Chem. Eng., 2007, 24(5), 917—919 |
112 | De Filippis P., Scarsella M., Borgianni C., Pochetti F., Energy Fuels, 2006, 20(1), 17—20 |
113 | Yang L., Yang X., Zhou R., J. Phys. Chem. C, 2016, 120(5), 2712—2723 |
114 | Song J. H., Jun J. O., Kang K. H., Han S. J., Yoo J., Park S., Kim D. H., Song I. K., J. Nanosci. Nanotechno., 2016, 16(10), 10810—10815 |
115 | Su D. S., Thomas A., ChemSusChem, 2010, 3(2), 120 |
116 | Kumar P., Srivastava V. C., Mishra I. M., Energy Fuels, 2015, 29(4), 2664—2675 |
117 | Srivastava R., Srinivas D., Ratnasamy P., J. Catal., 2006, 241(1), 34—44 |
118 | Saada R., AboElazayem O., Kellici S., Heil T., Morgan D., Lampronti G. I., Saha B., Appl. Catal. B, 2018, 226, 451—462 |
119 | Fujita S. I., Bhanage B. M., Kanamaru H., Arai M., J. Mol. Catal. A: Chem., 2005, 230(1), 43—48 |
120 | Jagtap S. R., Patil Y. P., Fujita S. I., Arai M., Bhanage B. M., Appl. Catal. A: Gen., 2008, 341(1), 133—138 |
121 | Jagtap S. R., Patil Y. P., Panda A. G., Bhanage B. M., Synth. Commun., 2009, 39(12), 2093—2100 |
122 | Xiao L. F., Xu L.W., Xia C. G., Green Chem., 2007, 9(4), 369—372 |
123 | Gong H., Yang N. F., Deng G. J., Xu G. Y., Chem. Lett., 2009, 38(6), 584—585 |
124 | Gong J. L., Yue H. R., Zhao Y. J., Zhao S., Zhao L., Lv J., Wang S. P., Ma X. B., J. Am. Chem. Soc., 2012, 134(34), 13922—13925 |
125 | He Z., Lin H. Q., He P., Yuan Y. Z., J. Catal., 2011, 277(1), 54—63 |
126 | Huang Y., Ariga H., Zheng X. L., Duan X. P., Takakusagi S., Asakura K., Yuan Y. Z., J. Catal., 2013, 307, 74—83 |
127 | Li M. M. J., Zheng J. W., Qu J., Liao F. L., Raine E., Kuo W. C. H., Su S. S., Po P., Yuan Y. Z., Tsang S. C. E., Sci. Rep., 2016, 6, 8 |
128 | Wang Y. N., Duan X. P., Zheng J. W., Lin H. Q., Yuan Y. Z., Ariga H., Takakusagi S., Asakura K., Catal. Sci. Technol., 2012, 2(8), 1637—1639 |
129 | Zheng J. W., Huang L. L., Cui C. H., Chen Z. C., Liu X. F., Duan X. P., Cao X. Y., Yang T. Z., Zhu H. P., Shi K., Du P., Ying S. W., Zhu C. F., Yao Y. G., Guo G. C., Yuan Y. Z., Xie S. Y., Zheng L. S., Science, 2022, 376(6590), 288—292 |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[3] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[4] | SONG Dewen, WANG Mingwang, WANG Yani, JIAO Zhenmei, NING Hui, WU Mingbo. Progress of CO2 Electroreduction to Oxalic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220248. |
[5] | ZHOU Leilei, CHENG Haiyang, ZHAO Fengyu. Research Progress of CO2 Hydrogenation over Pd-based Heterogeneous Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220279. |
[6] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[7] | GUO Zhiqiang, YANG Boru, XI Chanjuan. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220199. |
[8] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[9] | ZHANG Xinxin, XU Di, WANG Yanqiu, HONG Xinlin, LIU Guoliang, YANG Hengquan. Effect of Mn Promoter on CuFe-based Catalysts for CO2 Hydrogenation to Higher Alcohols [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220187. |
[10] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[11] | ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2 [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255. |
[12] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[13] | DING Yang, WANG Wanhui, BAO Ming. Recent Progress in Porous Framework-immobilized Molecular Catalysts for CO2 Hydrogenation to Formic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220309. |
[14] | SONG Youwei, AN Jiangwei, WANG Zheng, WANG Xuhui, QUAN Yanhong, REN Jun, ZHAO Jinxian. Effects of Ag,Zn,Pd-doping on Catalytic Performance of Copper Catalyst for Selective Hydrogenation of Dimethyl Oxalate [J]. Chem. J. Chinese Universities, 2022, 43(6): 20210842. |
[15] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||