Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (6): 20220126.doi: 10.7503/cjcu20220126
• Physical Chemistry • Previous Articles Next Articles
SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao()
Received:
2022-03-01
Online:
2022-06-10
Published:
2022-04-15
Contact:
CHEN Limiao
E-mail:chenlimiao@csu.edu.cn
Supported by:
CLC Number:
TrendMD:
SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction[J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126.
Reaction | Eθ/V(vs. NHE), pH=0 | Eθ/V(vs. NHE), pH=7 | n |
---|---|---|---|
2H++2e-→H2 | 0 | -0.41 | 2 |
2H2O→O2+4H++4e- | 1.23 | 0.82 | 4 |
CO2+e-→ | -1.49 | -1.90 | 1 |
CO2+2H++2e-→HCOOH | -0.19 | -0.61 | 2 |
CO2+2H++2e-→CO+H2O | -0.1 | -0.53 | 2 |
CO2+6H++6e-→CH3OH+H2O | -0.03 | -0.38 | 6 |
CO2+4H++4e-→C+H2O | 0.21 | -0.2 | 4 |
CO2+8H++8e-→CH4+H2O | 0.17 | -0.24 | 8 |
O2+e-→O2- | 0.27 | -0.137 | 1 |
Table 1 Standard potential(Eθ) and the number of electrons transferred for CO2 reduction at 1.0×105 Pa and 25 ℃
Reaction | Eθ/V(vs. NHE), pH=0 | Eθ/V(vs. NHE), pH=7 | n |
---|---|---|---|
2H++2e-→H2 | 0 | -0.41 | 2 |
2H2O→O2+4H++4e- | 1.23 | 0.82 | 4 |
CO2+e-→ | -1.49 | -1.90 | 1 |
CO2+2H++2e-→HCOOH | -0.19 | -0.61 | 2 |
CO2+2H++2e-→CO+H2O | -0.1 | -0.53 | 2 |
CO2+6H++6e-→CH3OH+H2O | -0.03 | -0.38 | 6 |
CO2+4H++4e-→C+H2O | 0.21 | -0.2 | 4 |
CO2+8H++8e-→CH4+H2O | 0.17 | -0.24 | 8 |
O2+e-→O2- | 0.27 | -0.137 | 1 |
16 | Xiang T. Y., Xin F., Zhao C., Lou S., Qu W. X., Wang Y., Song Y. X., Zhang S. F., Yin X. H., J. Colloid Interface Sci., 2018, 518, 34—40 |
17 | Zhang W. H., Mohamed A. R., Ong W. J., Angew. Chem. Int. Ed., 2020, 59(51), 22894—22915 |
18 | Nogueira A. E., Oliveira J. A., da Silva G., Ribeiro C., Sci. Rep., 2019, 9(1), 1316 |
19 | Xie H., Wang J. Y., Ithisuphalap K., Wu G., Li Q., J. Energy Chem., 2017, 26(6), 1039—1049 |
20 | Meng L. X., Tian W., Wu F. L., Cao F. R., Li L., J. Mater. Sci. Technol., 2019, 35(8), 1740—1746 |
21 | Zhang L., Luo Q., Chen X., Tse M. S., Tan O. K., Li K. H. H., Tay Y. Y., Lim C. K., Guo X., Leong K. C., RSC Adv., 2016, 6(69), 65038—65046 |
22 | Wang W. Z., Wang J., Wang Z. Z., Wei X. Z., Liu L., Ren Q. S., Gao W. L., Liang Y. J., Shi H. L., Dalton Trans., 2014, 43(18), 6581—6936 |
23 | Baqer A. A., Matori K. A., Al⁃Hada N. M., Shaari A. H., Kamari H. M., Saion E., Chyi J. L. Y.,Abdullah C. A. C., Results Phys., 2018, 9, 471—478 |
24 | Gao S., Gu B. C., Jiao X. C., Sun Y. F., Zu X. L., Yang F., Zhu W. G., Wang C. M., Feng Z. M., Ye B. J., Xie Y., J. Am. Chem. Soc., 2017, 139(9), 3438—3445 |
25 | Mohamed N. A., Safaei J., Ismail A. F., Khalid M. N., Mohd Jailani M. F. A., Noh M. F. M., Arzaee N. A., Zhou D., Sagu J. S., Teridi M. A. M., Mater. Res. Bull., 2020, 125, 110779 |
26 | Murugadoss G., Jayavel R., Rajesh K. M., Superlattices Microstruct., 2015, 82, 538—550 |
27 | Kong X. Y., Choo Y. Y., Chai S. P., Soh A. K., Mohamed A. R., ChemComm(Camb), 2016, 52(99), 14242—14245 |
28 | Kumar A., Sharma S. K., Sharma G., Guo C., Vo D. N., Iqbal J., Naushad M., Stadler F. J., J. Hazard. Mater., 2021, 402, 123790 |
29 | Cocco F., Elsener B., Fantauzzi M., Atzei D., Rossi A., RSC Adv., 2016, 6(37), 31277—31289 |
30 | Feng Y. M., Wang G. J., Liao J. C., Li W., Chen C., Li M. Y., Li Z. C., Sci. Rep, 2017, 7(1), 11622 |
31 | Ali S., Razzaq A., Kim H., In S. I., Chem. Eng. J., 2022, 429, 131579 |
32 | Fu J. W., Jiang K. X., Qiu X. Q., Yu J. G., Liu M., Mater. Today, 2020, 32, 222—243 |
33 | Ojha N., Bajpai A., Kumar S., J. Colloid Interface Sci., 2021, 585, 764—777 |
1 | Zhang Z. T., Yi G. Y., Li P., Zhang X. X., Fan H. Y., Wang X. D., Zhang C. X., Zhang Y. L., Int. J. Energy Res., 2021, 45(7), 9895—9913 |
2 | Li S., Ongis M., Manzolini G., Gallucci F., Chem. Eng. J., 2021, 410, 128335 |
3 | Tierney J. E., Poulsen C. J., Montanez I. P., Bhattacharya T., Feng R., Ford H. L., Honisch B., Inglis G. N., Petersen S. V., Sagoo N., Science, 2020, 370, 6517 |
4 | Halmann M., Nature, 1978, 275(5676), 115—116 |
5 | Zhao K., Quan X., ACS Catal., 2021, 11(4), 2076—2097 |
6 | Xue J. B., Gao G. X., Shen Q. Q., Liu T. W., Liu X. G., Jia H. S., Chem. J. Chinese Universities, 2021, 42(8), 2493—2499 |
薛晋波, 高国翔, 申倩倩, 刘天武, 刘旭光, 贾虎生. 高等学校化学学报, 2021, 42(8), 2493—2499 | |
7 | Zhou Y., Tian Z. P., Zhao Z. Y., Liu Q., Kou J. H., Chen X. Y., Gao J., Yan S. C., Zou Z. G., ACS Appl. Mater. Interfaces, 2011, 3(9), 3594—3601 |
8 | Dong C. W., Lu S. Y., Yao S. Y., Ge R., Wang Z. D., Wang Z., An P. F., Liu Y., Yang B., Zhang H., ACS Catal., 2018, 8(9), 8649—8658 |
9 | Duan Z. Y., Zhao X. J., Wei C. W., Chen L. M., J. Environ. Chem. Eng., 2021, 9, 104628 |
10 | Li S. Y., Wang J. C., Xia Y., Li P. Y., Wu Y., Yang K. L., Song Y. X., Jiang S. Y., Zhang T., Li B., Chem. Eng. J., 2021, 417, 129298 |
11 | Huang S. L., Yi H., Zhang L. H., Jin Z. Y., Long Y. J., Zhang Y. Y., Liao Q. F., Na J., Cui H. Z., Ruan S. C., Yamauchi Y., Wakihara T., Kaneti Y. V., Zeng Y. J., J. Hazard. Mater., 2020, 393, 122324 |
12 | Tayebi M., Tayyebi A., Lee B. K., Lee C. H., Lim D. H., Sol. Energy Mater Sol. Cells, 2019, 200, 109943 |
13 | Zeng C., Zeng Q., Dai C. H., Zhang L. K., Hu Y. M., Appl. Surf. Sci., 2021, 542, 148686 |
14 | Min Y., Im E., Hwang G. T., Kim J. W., Ahn C. W., Choi J. J., Hahn B. D., Choi J. H., Yoon W. H., Park D. S., Hyun D. C., Moon G. D., J. Nano Res., 2019, 12(8), 1750—1769 |
15 | Yang Y., Wu J. J., Xiao T. T., Tang Z., Shen J. Y., Li H. J., Zhou Y., Zou Z. G., Appl. Catal. B, 2019, 255, 117771 |
34 | Wang J. C., Zhang L., Fang W. X., Ren J., Li Y. Y., Yao H. C., Wang J. S., Li Z. J., ACS Appl. Mater. Interfaces, 2016, 8(6), 3765—3775 |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[3] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[4] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[5] | YANG Xiaomei, WU Qiang, GUO Ru, YE Kaibo, XUE Ping, WANG Xiaozhong, LAI Xiaoyong. Ordered Mesoporous NiS-loaded CdS with Ultrathin Frameworks for Efficient Photocatalytic H2 Production [J]. Chem. J. Chinese Universities, 2021, 42(5): 1581. |
[6] | YANG Tao, YAO Huiying, LI Qing, HAO Wei, CHI Lifeng, ZHU Jia. Density Functional Theoretical Studies on the Promising Electrocatalyst of M-BHT(M=Co or Cu) for CO2 Reduction to CH4 [J]. Chem. J. Chinese Universities, 2021, 42(4): 1268. |
[7] | WANG Yishu, LI Xue, YAN Li, XU Hongyun, ZHU Yuxin, SONG Yanhua, CUI Yanjuan. Photocatalytic Reduction Performance of Z-scheme Two-dimensional BCN/Sn3O4 Composite Materials [J]. Chem. J. Chinese Universities, 2021, 42(12): 3722. |
[8] | LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks [J]. Chem. J. Chinese Universities, 2020, 41(9): 1917. |
[9] | MA Xiangying, LIAO Yanjun, QIN Fanghong, YIN Yuanhao, HUANG Zaiyin, CHEN Qifeng. Study on the Photocatalytic Performance of Carbon Doped g-C3N4 Based on in situ Photomicrocalorimeter-fluorescence Spectrometry [J]. Chem. J. Chinese Universities, 2020, 41(11): 2526. |
[10] | ZHAO Mengxin, MENG Zhe, LI Heping, MA Zongqin, ZHAN Haijuan, LIU Wanyi. Photodegradation of Antibiotic in Environmental Water by Graphene Oxide Modulation Bismuth Molybdate Under Visible Light Irradiation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2479. |
[11] | HE Pengchen,ZHOU Jian,ZHOU Awu,DOU Yibo,LI Jianrong. MOFs-Based Materials for Photocatalytic CO2 Reduction† [J]. Chem. J. Chinese Universities, 2019, 40(5): 855. |
[12] | GAN Lu,DONG Yongchun. Photocatalytic Performance of Fe-complexes Prepared Using Cotton Fiber Modified with Different Dicarboxylic Acids [J]. Chem. J. Chinese Universities, 2019, 40(10): 2205. |
[13] | ZHANG Jing,DONG Yuming,LIU Xiang,LI Hexing. Synthesis and Photocatalytic Activity of Z-Scheme Photocatalyst Sb2WO6/g-C3N4 † [J]. Chem. J. Chinese Universities, 2019, 40(1): 123. |
[14] | CONG Rimin, YU Huaiqing, LUO Yunjun, LI Jiao, WANG Weiwei, LI Qiuhong, SUN Wuzhu, SI Weimeng, ZHANG Hua. Synthesis and Properties of Bi25FeO40/α-Fe2O3 Composite Nanoparticle Photocatalysts† [J]. Chem. J. Chinese Universities, 2018, 39(4): 629. |
[15] | HU Xueyan,WANG Na,HAO Yuting,XU Zhiqing,WANG Minghui,SHI Gaiqin,YANG Huimin,LIANG Zhenhai. Preparation of Cu Doped SnO2 Cathode Material for Electroreduction of Carbon Dioxide at Low Overpotential† [J]. Chem. J. Chinese Universities, 2018, 39(10): 2265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||