Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (2): 20210593.doi: 10.7503/cjcu20210593
• Material Chemistry • Previous Articles Next Articles
YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong()
Received:
2021-08-18
Online:
2022-02-10
Published:
2021-11-11
Contact:
YIN Dezhong
E-mail:dezh_yin@nwpu.edu.cn
Supported by:
CLC Number:
TrendMD:
YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide[J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593.
Sample | m(GO?PDMAEMA)/mg | m(Monomer)/g | m(AM)/g | m(HEMA)/g | m(MBAA)/g | m(Internal phase)/g | m(CTAB)/g |
---|---|---|---|---|---|---|---|
Poly75?15 | 0 | 8 | 2 | 6 | 1.44 | 75 | 3.75 |
Poly75?15?200 | 200 | 8 | 2 | 6 | 1.44 | 75 | 3.73 |
Poly75?15?300 | 300 | 8 | 2 | 6 | 1.44 | 75 | 3.75 |
Poly75?15?400 | 400 | 8 | 2 | 6 | 1.44 | 75 | 3.75 |
Table 1 Formula table of phase change composite Poly-Paraffin
Sample | m(GO?PDMAEMA)/mg | m(Monomer)/g | m(AM)/g | m(HEMA)/g | m(MBAA)/g | m(Internal phase)/g | m(CTAB)/g |
---|---|---|---|---|---|---|---|
Poly75?15 | 0 | 8 | 2 | 6 | 1.44 | 75 | 3.75 |
Poly75?15?200 | 200 | 8 | 2 | 6 | 1.44 | 75 | 3.73 |
Poly75?15?300 | 300 | 8 | 2 | 6 | 1.44 | 75 | 3.75 |
Poly75?15?400 | 400 | 8 | 2 | 6 | 1.44 | 75 | 3.75 |
Fig.6 SEM images of PolyHIPE prepared by polymerization with different amounts of GO?PDMAEMAThe mass fraction of GO?PDMAEMA in PolyHIPE(%): (A) 0; (B) 0.2; (C) 0.3; (D) 0.4.
Sample | Internal phase ratio(%) | CTAB content(%) | m(Modified GO)/mg | Porosity(%) | Average pore size/nm | Pore volume/ (m2?g-1) |
---|---|---|---|---|---|---|
Poly75?15 | 75 | 15 | 0 | 79.40 | 1668.4 | 8.805 |
Poly75?15?200 | 75 | 15 | 200(0.2%) | 81.06 | 1074.0 | 14.674 |
Poly75?15?300 | 75 | 15 | 300(0.3%) | 79.32 | 1084.1 | 13.443 |
Poly75?15?400 | 75 | 15 | 400(0.4%) | 82.07 | 590.9 | 30.122 |
Table 2 Mercury intrusion data of PolyHIPE prepared by polymerization with different amounts of GO-PDMAEMA
Sample | Internal phase ratio(%) | CTAB content(%) | m(Modified GO)/mg | Porosity(%) | Average pore size/nm | Pore volume/ (m2?g-1) |
---|---|---|---|---|---|---|
Poly75?15 | 75 | 15 | 0 | 79.40 | 1668.4 | 8.805 |
Poly75?15?200 | 75 | 15 | 200(0.2%) | 81.06 | 1074.0 | 14.674 |
Poly75?15?300 | 75 | 15 | 300(0.3%) | 79.32 | 1084.1 | 13.443 |
Poly75?15?400 | 75 | 15 | 400(0.4%) | 82.07 | 590.9 | 30.122 |
Sample | Thermal diffusivity/ (cm2?s-1) | Thermal conductivity/ (W?m-1?K-1) | Sample | Thermal diffusivity/ (cm2?s-1) | Thermal conductivity/ (W?m-1?K-1) |
---|---|---|---|---|---|
Paraffin | 0.00106 | 0.608 | Poly75?15?300 | 0.00494 | 2.872 |
Poly75?15 | 0.00215 | 1.235 | Poly75?15?400 | 0.00677 | 3.968 |
Poly75?15?200 | 0.00342 | 1.996 |
Table 3 Thermal conductivity test results of phase change composites
Sample | Thermal diffusivity/ (cm2?s-1) | Thermal conductivity/ (W?m-1?K-1) | Sample | Thermal diffusivity/ (cm2?s-1) | Thermal conductivity/ (W?m-1?K-1) |
---|---|---|---|---|---|
Paraffin | 0.00106 | 0.608 | Poly75?15?300 | 0.00494 | 2.872 |
Poly75?15 | 0.00215 | 1.235 | Poly75?15?400 | 0.00677 | 3.968 |
Poly75?15?200 | 0.00342 | 1.996 |
Fig.7 DSC spectra(A) and TGA curves(B) of phase change composites with paraffin wax and different amounts of GO?PDMAEMAa. Paraffin; b. Poly75?15?400; c. Poly75?15.
Sample | Tm/℃ | Tf/℃ | ΔHm/(J?g-1) | ΔHf/(J?g-1) | R(%) | E(%) | Heat storage capacity(%) |
---|---|---|---|---|---|---|---|
Paraffin | 64.5 | 56.7 | 258.1 | 268.5 | 100 | 100 | 100 |
Poly75?15 | 62.8 | 46.5 | 200.7 | 204.1 | 77.8 | 76.9 | 98.8 |
Poly75?15?200 | 60.6 | 47.3 | 208.3 | 194.3 | 80.7 | 76.5 | 94.7 |
Poly75?15?300 | 63.1 | 46.4 | 206.0 | 210.6 | 79.8 | 79.1 | 99.1 |
Poly75?15?400 | 60.5 | 46.9 | 214.7 | 217.8 | 83.2 | 82.1 | 98.7 |
Table 4 Phase change parameters of GO/paraffin composites
Sample | Tm/℃ | Tf/℃ | ΔHm/(J?g-1) | ΔHf/(J?g-1) | R(%) | E(%) | Heat storage capacity(%) |
---|---|---|---|---|---|---|---|
Paraffin | 64.5 | 56.7 | 258.1 | 268.5 | 100 | 100 | 100 |
Poly75?15 | 62.8 | 46.5 | 200.7 | 204.1 | 77.8 | 76.9 | 98.8 |
Poly75?15?200 | 60.6 | 47.3 | 208.3 | 194.3 | 80.7 | 76.5 | 94.7 |
Poly75?15?300 | 63.1 | 46.4 | 206.0 | 210.6 | 79.8 | 79.1 | 99.1 |
Poly75?15?400 | 60.5 | 46.9 | 214.7 | 217.8 | 83.2 | 82.1 | 98.7 |
Sample | Before the cycle | After 1000 cycles | ||||
---|---|---|---|---|---|---|
ΔHm/(J?g-1) | R(%) | ΔHm/(J?g-1) | R(%) | Leakage(%) | Leakage fraction(%) | |
Poly75?15 | 200.7 | 77.8 | 192.8 | 74.7 | 3.1 | 4.0 |
Poly75?15?200 | 208.3 | 80.7 | 206.0 | 79.7 | 1.0 | 1.3 |
Poly75?15?300 | 206.0 | 79.8 | 203.8 | 79.0 | 0.8 | 1.1 |
Poly75?15?400 | 214.7 | 83.2 | 212.2 | 82.2 | 1.2 | 1.3 |
Table 5 Leakage of phase change composites after 1000 cycles
Sample | Before the cycle | After 1000 cycles | ||||
---|---|---|---|---|---|---|
ΔHm/(J?g-1) | R(%) | ΔHm/(J?g-1) | R(%) | Leakage(%) | Leakage fraction(%) | |
Poly75?15 | 200.7 | 77.8 | 192.8 | 74.7 | 3.1 | 4.0 |
Poly75?15?200 | 208.3 | 80.7 | 206.0 | 79.7 | 1.0 | 1.3 |
Poly75?15?300 | 206.0 | 79.8 | 203.8 | 79.0 | 0.8 | 1.1 |
Poly75?15?400 | 214.7 | 83.2 | 212.2 | 82.2 | 1.2 | 1.3 |
14 | Kim K., Kim S., Ryu J., Jeon J., Jang S. G., Kim H., Gweon D. G., Im W. B., Han Y., Kim H., Choi S. Q., Nat. Commun., 2017, 8, 14305 |
15 | Zeng T., Wu Z. L., Zhu J. Y., Yin S. W., Tang C. H., Wu L. Y., Yang X. Q., Food Chem., 2017, 231, 122—130 |
16 | Xiong J. E., Li S., Li Y., Chen Y. L., Liu Y., Gan J. L., Ju J. H., Xian Y. L., Xiong X. H., Chem. Res. Chinese Universities, 2020, 36(5), 787—794 |
17 | Koysuren H. N., Catalysts, 2018, 8(11), 499 |
18 | Fan X., Fan P., Li S. D., Wu Y. H., Shao S. J., Zhai L. J., Polym. Mater. Sci. Eng., 2018, 34(4), 185—190(范欣, 范平, 李松栋, 吴跃焕, 邵圣娟, 翟丽军. 高分子材料科学与工程, 2018, 34(4), 185—190) |
19 | Stabler C., Reitz A., Stein P., Albert B., Riedel R., Lonescu E., Materials, 2018, 11(2), 279 |
20 | Guo Y. Q., Ruan K. P., Yang X. T., Ma T. B., Kong J., Wu N. N., Zhang J. X., Gu J. W., Guo Z. H., J. Mater. Chem. C, 2019, 7(23), 7035—7044 |
21 | Fu Q. L., Ansari F., Zhou Q., Berglund L. A., ACS Nano, 2018, 12(3), 2222—2230 |
22 | Guan C. L., Sun Z. G., Chen B., Zhang Y. H., Zhu J., Acta Mater. Compos. Sin., 2016, 33(1), 77—83(官成兰, 孙争光, 陈博, 张玉红, 朱杰. 复合材料学报, 2016, 33(1), 77—83) |
23 | Wang Y., Liu Z. M., Niu X. F., Ling X., Energy & Fuels, 2019, 33(2), 1631—1636 |
1 | Liu C. C., Xu D. J., Weng J. W., Zhou S. J., Li W. J., Wan Y. Q., Jiang S. J., Zhou D. C., Wang J., Huang Q., Materials, 2020, 13(20), 4622 |
2 | Sharifi N. P., Shaikh A. A. N., Sakulich A. R., Energy & Buildings, 2017, 138, 455—467 |
3 | Tang B. T., Wei H. P., Zhao D. F., Zhang S. F., Sol. Energy Mater. & Sol. Cells, 2017, 161, 183—189 |
4 | da Cunha J. P., Eames P., Applied Energy, 2016, 177, 227—238 |
5 | Gui H. G., Zhang T., Guo Q. P., ACS Applied Materials & Interfaces, 2019, 11(39), 36063—36072 |
6 | Koysuren O., Koysuren H. N., J. Macromol. Sci.: Part A⁃Pure Appl. Chem., 2017, 54(2), 80—84 |
7 | Kiaei M., Kord B., Samariha A., Moghdam Y. R., Farsi M., Bioresources, 2017, 12(3), 6518—6528 |
8 | Weller J. E., Kumar V., Polym. Eng. Sci., 2010, 50(11), 2160—2169 |
9 | Hamidinejad S. M., Chu R. K. M., Zhao B., Park C. B., Filleter T., ACS Applied Materials & Interfaces, 2018, 10(1), 1225—1236 |
10 | Mahadik D. B., Lee K. Y., Ghorpade R. V., Park H. H., Scientific Reports, 2018, 8, 16783 |
11 | Cervin N. T., Johanson E., Larsson P. A., Wagberg L., ACS Applied Materials & Interfaces, 2016, 8(18), 11682—11689 |
12 | Kudzma A., Skamat J., Stonys R., Krasnikovs A., Kuznetsov D., Girskas G., Antonovic V., Materials, 2019, 12(5), 802 |
13 | Cai N., Li C., Luo X. G., Xue Y. N., Shen L., Yu F. Q., J. Mater. Sci., 2016, 51(2), 797—808 |
24 | Wang D., Ge X. S., Zhang J. F., Su Z. M., Chem. Res. Chinese Universities, 2019, 35(6), 1082—1088 |
[1] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. |
[2] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[3] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[4] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[5] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[6] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[7] | LI Peihong, ZHANG Chunling, DAI Xueyan, SUI Yanlong. Progress of Graphene Oxide/Polymer Composite Hydrogel [J]. Chem. J. Chinese Universities, 2021, 42(6): 1694. |
[8] | MIAO Weijun, WU Feng, WANG Yong, WANG Zongbao. In⁃situ Study of the Epitaxial Crystallization of PCL/RGO at High Shear Rate [J]. Chem. J. Chinese Universities, 2021, 42(3): 910. |
[9] | HUANG Dongxue, ZHANG Ying, ZENG Ting, ZHANG Yuanyuan, WAN Qijin, YANG Nianjun. Transition Metal Sulfides Hybridized with Reduced Graphene Oxide for High-Performance Supercapacitors [J]. Chem. J. Chinese Universities, 2021, 42(2): 643. |
[10] | WANG Bowei, MA Rui, WU Fan, LIU Zhihui, LI Lingfeng, ZHANG Xiao, LIU Dingkun, YANG Nan, LI Meihui, YANG Defeng, SUN Qi. Preparation and Characterization of Graphene Oxide-sodium Alginate-chitosan Composite Scaffold [J]. Chem. J. Chinese Universities, 2020, 41(9): 2099. |
[11] | ZHANG Weiguo, FAN Songhua, WANG Hongzhi, YAO Suwei. Synthesis of Self-assembled α-Fe2O3/Graphene Hydrogel for Supercapacitors with Promising Electrochemical Properties [J]. Chem. J. Chinese Universities, 2020, 41(8): 1850. |
[12] | CHEN Yantian, QIE Hantong, ZHANG Yinjie, ZHOU Caiji, TAN Xiao, LIN Aijun. Synthesis of Reduced Graphene Oxide Supported Zero-valent Iron and Its Treatment of TNT Wastewater [J]. Chem. J. Chinese Universities, 2020, 41(8): 1836. |
[13] | ZHANG Xiaofei, WU Lie, LI Shanshan, ZHU Manyu, CHENG Xiaowei, JIANG Xiu’e. Effect of Phase Behavior of Phospholipids on Lipid Membrane Damage Induced by Graphene Oxide † [J]. Chem. J. Chinese Universities, 2020, 41(4): 661. |
[14] | XIE Fan,WANG Yafang,ZHUO Longhai,QIN Panliang,NING Doudou,WANG Danni,LU Zhaoqing. Preparation and Properties of High Thermal Conductivity Hexagonal Boron Nitride/Aramid Fibrid Composite Film [J]. Chem. J. Chinese Universities, 2020, 41(3): 582. |
[15] | FANG Mingliang,LIU Dong,HU Meishao,WANG Lei. Synthesis and Properties of Highly Branched Comb-shaped Poly(aryl ether sulfone)s/imidazolium-functionalized Graphene Oxide Anion Exchange Composite Membranes † [J]. Chem. J. Chinese Universities, 2020, 41(2): 365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||