Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (4): 661.doi: 10.7503/cjcu20190645
Previous Articles Next Articles
ZHANG Xiaofei1,2,WU Lie1,*(),LI Shanshan1,2,ZHU Manyu1,2,CHENG Xiaowei1,2,JIANG Xiu’e1,2,*(
)
Received:
2019-12-10
Online:
2020-04-10
Published:
2020-02-07
Contact:
Lie WU,Xiu’e JIANG
E-mail:lwu@ciac.ac.cn;jiangxiue@ciac.ac.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Xiaofei, WU Lie, LI Shanshan, ZHU Manyu, CHENG Xiaowei, JIANG Xiu’e. Effect of Phase Behavior of Phospholipids on Lipid Membrane Damage Induced by Graphene Oxide †[J]. Chem. J. Chinese Universities, 2020, 41(4): 661.
Fig.2 SEIRAS of GO interacting with lipid membrane in single phase state(A) DOPC lipid membrane in fluid state; (B), (C) DPPC lipid membrane in gel state and in fluid state in water, respectively. Sample spectra were obtained with the spectra of lipid membrane in water as reference. Curves a—f were recorded at 1, 5, 10, 30, 60 and 90 min, respectively.
Fig.3 Fluorescence images of the morphology change of GO interacting with lipid membrane in single phase state(A), (A') DOPC lipid membrane in fluid state before(A) and after(A') interacting with GO. (B), (B'), (C), (C') DPPC lipid membrane in gel state(B, B') and in fluid state(C, C') before(B, C) and after(B', C') interacting with GO.
Fig.4 Cartoon schematic diagram of orientation of head group of PC lipids in gel phase and fluid phase(A) and fluorescence intensity change of fluorescence-labeled DOPC and DPPC vesicles after interacting with GO(B)
Fig.5 SEIRA difference spectra of GO interact with DPPC/DOPC(1∶10)(A), DPPC/DOPC(1∶4)(B) and DPPC/DOPC(1∶1)(C) lipid membranes in two phase separation Sample spectra were obtained with the spectra of lipid membrane in water as reference, respectively. ^Curves a—f were recorded at 1, 5, 10, 30, 60 and 90 min, respectively.
Fig.6 Fluorescence images of the morphology change of DPPC/DOPC(1∶10)(A, D), DPPC/DOPC(1∶4)(B, E) and DPPC/DOPC(1∶1)(C, F) lipid membrans interact without(A—C) and with(D—F) GO in two phase separation
Fig.7 Normalized emission spectra(A) and generalized polarization GP340 value(B) of lipid vesicles mixed with different molar ratios of DOPC and DPPC lipids
[1] | Hamada T., Morita M., Miyakawa M., Sugimoto R., Hatanaka A., Vestergaard M. D. C., Takagi M., J. Am. Chem. Soc., 2012, 134( 34), 13990— 13996 |
[2] | Kato A., Tsuji A., Yanagisawa M., Saeki D., Juni K., Morimoto Y., Yoshikawa K., J. Phys. Chem. Lett., 2010, 1( 23), 3391— 3395 |
[3] | Hamada T., Morita M., Kishimoto Y., Komatsu Y., Vestergaard M., Takagi M., J. Phys. Chem. Lett., 2010, 1( 1), 170— 173 |
[4] | Mecke A., Lee D. K., Ramamoorthy A., Orr B. G., Holl M. M. B ., Langmuir, 2005, 21( 19), 8588— 8590 |
[5] | Wang F., Liu J. W ., Nanoscale, 2015, 7( 38), 15599— 15604 |
[6] | Wang B., Zhang L. F., Bae S. C..>, Granick S ., Proc. Natl. Acad. Sci. USA, 2008, 105( 47), 18171— 18175 |
[7] | Tadyszak K., Wychowaniec J. K., Litowczenko J ., Nanomaterials, 2018, 8( 11), 944— 964 |
[8] | Kostarelos K., Novoselov K. S ., Science, 2014, 344, 261— 263 |
[9] | Li Y. F., Yuan H. Y., Bussche A. V. D., Creighton M., Hurt R. H., Kane A. B., Gao H. J ., Proc. Natl. Acad. Sci. USA, 2013, 110( 30), 12295— 12300 |
[10] | Tu Y. S., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., Liu Z. R, Huang Q., Fan C. H., Fang H. P., Zhou R. H., Nat. Nanotechnol., 2013, 8, 594— 601 |
[11] | Duan G. X., Zhang Y. Z., Luan B. Q., Weber J. K., Zhou R. W., Yang Z. X., Zhao L., Xu J. Y., Luo J. D., Zhou R. H., Sci. Rep., 2017, 7, 1— 12 |
[12] | Chen J. L., Zhou G. Q., Chen L., Wang Y., Wang X. G., Zeng S. W., J. Phys. Chem. C, 2016, 120( 11), 6225— 6231 |
[13] | Wu L., Zeng L., Jiang X. E., J. Am. Chem. Soc., 2015, 137( 32), 10052— 10055 |
[14] | Zhang X. F., Cao F. J., Wu L., Jiang X. E ., Langmuir, 2019, 35( 43), 14098— 14107 |
[15] | Li R. B., Guiney L. M., Chang C. H., Mansukhani N. D., Ji Z. X., Wang X., Liao Y. P., Jiang W., Sun B. B., Hersam M. C., Nel A. E., Xia T., ACS Nano, 2018, 12( 2), 1390— 1402 |
[16] | Chen J., Zhang Y., Zhang M., Yao B. W., Li Y. R., Huang L., Li C., Shi G. Q., Chem. Sci., 2016, 7, 1874— 1881 |
[17] | Dey R. S., Hajra S., Sahu R. K., Raj C. R., Panigrahi M. K., Chem. Commun., 2012, 48( 12), 1787— 1789 |
[18] | Liu L., Zeng L., Wu L., Jiang X. E., J. Phys. Chem. C, 2015, 119( 8), 3990— 3999 |
[19] | Jing B. X., Zhu Y. X., J. Am. Chem. Soc., 2011, 133( 28), 10983— 10989 |
[20] | Meuse C. W., Krueger S., Majkrzak C. F., Dura J. A., Fu J., Connor J. T., Plant A. L., Biophys. J., 1998, 74( 3), 1388— 1398 |
[21] | Badia A., Back R., Lennox R. B., Angew. Chem. Int. Ed., 1994, 33( 22), 2332— 2335 |
[22] | Li Z., Zhang Y. H., Chan C., Zhi C. Y., Cheng X. L., Fan J., ACS Nano, 2018, 12( 3), 2764— 2772 |
[23] | Pyrkova D. V., Tarasova N. K., Pyrkov T. V., Krylov N. A., Efremov R. G., Soft Matter, 2011, 7( 6), 2569— 2579 |
[1] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[2] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[3] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[4] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[5] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[6] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[7] | LI Peihong, ZHANG Chunling, DAI Xueyan, SUI Yanlong. Progress of Graphene Oxide/Polymer Composite Hydrogel [J]. Chem. J. Chinese Universities, 2021, 42(6): 1694. |
[8] | MIAO Weijun, WU Feng, WANG Yong, WANG Zongbao. In⁃situ Study of the Epitaxial Crystallization of PCL/RGO at High Shear Rate [J]. Chem. J. Chinese Universities, 2021, 42(3): 910. |
[9] | HUANG Dongxue, ZHANG Ying, ZENG Ting, ZHANG Yuanyuan, WAN Qijin, YANG Nianjun. Transition Metal Sulfides Hybridized with Reduced Graphene Oxide for High-Performance Supercapacitors [J]. Chem. J. Chinese Universities, 2021, 42(2): 643. |
[10] | WANG Bowei, MA Rui, WU Fan, LIU Zhihui, LI Lingfeng, ZHANG Xiao, LIU Dingkun, YANG Nan, LI Meihui, YANG Defeng, SUN Qi. Preparation and Characterization of Graphene Oxide-sodium Alginate-chitosan Composite Scaffold [J]. Chem. J. Chinese Universities, 2020, 41(9): 2099. |
[11] | ZHANG Weiguo, FAN Songhua, WANG Hongzhi, YAO Suwei. Synthesis of Self-assembled α-Fe2O3/Graphene Hydrogel for Supercapacitors with Promising Electrochemical Properties [J]. Chem. J. Chinese Universities, 2020, 41(8): 1850. |
[12] | CHEN Yantian, QIE Hantong, ZHANG Yinjie, ZHOU Caiji, TAN Xiao, LIN Aijun. Synthesis of Reduced Graphene Oxide Supported Zero-valent Iron and Its Treatment of TNT Wastewater [J]. Chem. J. Chinese Universities, 2020, 41(8): 1836. |
[13] | GUAN Fanglan,LI Xin,ZHANG Qun,GONG Yan,LIN Ziyu,CHEN Yao,WANG Lejun. Fabrication and Capacitance Performance of Laser-machined RGO/MWCNT/CF In-plane Flexible Micro-supercapacitor † [J]. Chem. J. Chinese Universities, 2020, 41(2): 300. |
[14] | FANG Mingliang,LIU Dong,HU Meishao,WANG Lei. Synthesis and Properties of Highly Branched Comb-shaped Poly(aryl ether sulfone)s/imidazolium-functionalized Graphene Oxide Anion Exchange Composite Membranes † [J]. Chem. J. Chinese Universities, 2020, 41(2): 365. |
[15] | ZHAO Mengxin, MENG Zhe, LI Heping, MA Zongqin, ZHAN Haijuan, LIU Wanyi. Photodegradation of Antibiotic in Environmental Water by Graphene Oxide Modulation Bismuth Molybdate Under Visible Light Irradiation [J]. Chem. J. Chinese Universities, 2020, 41(11): 2479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||