Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (2): 20210595.doi: 10.7503/cjcu20210595
• Analytical Chemistry • Previous Articles Next Articles
WANG Xueli1, SONG Xiangwei2, XIE Yanning1, DU Niyang1, WANG Zhenxin3()
Received:
2021-08-18
Online:
2022-02-10
Published:
2021-10-27
Contact:
WANG Zhenxin
E-mail:wangzx@ciac.ac.cn
Supported by:
CLC Number:
TrendMD:
WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells[J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595.
Fig.1 UV?Vis spectra of GO and pRGO1—3(0.02 mg/mL)The inset shows a zoom?in view of the curves in the 800 nm region(top) and the suspensions of GO(1 mg /mL) and pRGO1—3(1 mg /mL)(bottom).
Day | GO peak | pRGO1 peak | pRGO2 peak | pRGO3 peak | ||||
---|---|---|---|---|---|---|---|---|
Position/nm | Absorbance | Position/nm | Absorbance | Position/nm | Absorbance | Position/nm | Absorbance | |
0 | 230 | 0.8798 | 230 | 0.6492 | 230 | 0.8397 | 233 | 0.8081 |
1 | 229 | 0.8661 | 230 | 0.6627 | 230 | 0.9041 | 232 | 0.8183 |
3 | 230 | 0.7955 | 230 | 0.6594 | 230 | 0.8597 | 233 | 0.8040 |
7 | 229 | 0.7872 | 230 | 0.6326 | 230 | 0.8230 | 233 | 0.8024 |
14 | 229 | 1.4661 | 229 | 0.6257 | 229 | 0.7690 | 233 | 0.8279 |
Table 1 Peak position and absorbance of GO and pRGO1—3
Day | GO peak | pRGO1 peak | pRGO2 peak | pRGO3 peak | ||||
---|---|---|---|---|---|---|---|---|
Position/nm | Absorbance | Position/nm | Absorbance | Position/nm | Absorbance | Position/nm | Absorbance | |
0 | 230 | 0.8798 | 230 | 0.6492 | 230 | 0.8397 | 233 | 0.8081 |
1 | 229 | 0.8661 | 230 | 0.6627 | 230 | 0.9041 | 232 | 0.8183 |
3 | 230 | 0.7955 | 230 | 0.6594 | 230 | 0.8597 | 233 | 0.8040 |
7 | 229 | 0.7872 | 230 | 0.6326 | 230 | 0.8230 | 233 | 0.8024 |
14 | 229 | 1.4661 | 229 | 0.6257 | 229 | 0.7690 | 233 | 0.8279 |
Element | Mass fraction(%) | Atomic fraction(%) | ||||||
---|---|---|---|---|---|---|---|---|
GO | pRGO1 | pRGO2 | pRGO3 | GO | pRGO1 | pRGO2 | pRGO3 | |
C | 61.3 | 62.5 | 63.4 | 66.7 | 67.8 | 68.1 | 69.8 | 72.8 |
O | 38.7 | 37.5 | 36.6 | 33.3 | 32.2 | 31.9 | 30.2 | 27.2 |
Table 2 EDS data of GO and pRGO1—3
Element | Mass fraction(%) | Atomic fraction(%) | ||||||
---|---|---|---|---|---|---|---|---|
GO | pRGO1 | pRGO2 | pRGO3 | GO | pRGO1 | pRGO2 | pRGO3 | |
C | 61.3 | 62.5 | 63.4 | 66.7 | 67.8 | 68.1 | 69.8 | 72.8 |
O | 38.7 | 37.5 | 36.6 | 33.3 | 32.2 | 31.9 | 30.2 | 27.2 |
Sample | τs | hS | ηT(%) |
---|---|---|---|
GO | 124.90 | 0.0073 | 17.2 |
pRGO1 | 183.18 | 0.0036 | 20.2 |
pRGO2 | 257.95 | 0.0050 | 31.7 |
pRGO3 | 300.23 | 0.0033 | 38.7 |
Table 3 Photothermal conversion efficiency of GO and pRGO1—3
Sample | τs | hS | ηT(%) |
---|---|---|---|
GO | 124.90 | 0.0073 | 17.2 |
pRGO1 | 183.18 | 0.0036 | 20.2 |
pRGO2 | 257.95 | 0.0050 | 31.7 |
pRGO3 | 300.23 | 0.0033 | 38.7 |
1 | Mendonça M. C., Soares E. S., de Jesus M. B., Ceragioli H. J., Batista Â. G., Nyúl⁃Tóth Á., Molnár J., Wilhelm I., Maróstica M. R. Jr, Krizbai I., da Cruz⁃Höfling M. A., Mol. Pharm., 2016, 13(11), 3913—3924 |
2 | Zhang Y., Liu S., Li Y., Deng D., Si X., Ding Y., He H., Luo L., Wang Z., Biosens. Bioelectron., 2015, 66, 308—315 |
3 | Ambrosi A., Chua C., Bonanni A., Pumera M., Chem. Mater., 2012, 24(12), 2292—2298 |
4 | Xing X. J., Liu X. G., He Y., Lin Y., Zhang C. L., Tang H. W., Pang D. W., Biomacromolecules, 2013, 14(1), 117—123 |
5 | Lepock J. R., Int. J. Hyperthermia., 2003, 19(3), 252—266 |
6 | Wang Y. H., Deng H. H., Liu Y. H., Shi X. Q., Liu A. L., Peng H. P., Hong G. L., Chen W., Biosens. Bioelectron., 2016, 80, 140—145 |
7 | Baigude H., McCarroll J., Yang C. S., ACS Chem. Bio., 2007, 2(4), 237—241 |
8 | Kam N. W., Liu Z., Dai H., J. Am. Chem. Soc., 2005, 127(36), 12492—12493 |
9 | Park J. H., von Maltzahn G., Xu M.J., Fogal V., Kotamraju V.R., Ruoslahti E., Bhatia S.N., Sailor M.J., Proc. Natl. Acad. Sci. USA, 2010, 107(3), 981—986 |
10 | Ma H. L., Jiang Q., Han S., Wu Y., Cui Tomshine J., Wang D., Gan Y., Zou G., Liang X.J., Molecular Imaging, 2012, 11(6), 487—498 |
11 | Liu H., Chen D., Li L, Liu T., Tan L., Wu X., Tang F., Angew. Chem. Int. Ed. Engl., 2011, 50(4), 891—895 |
12 | von Maltzahn G., Park J. H., Agrawal A., Bandaru N. K., Das S. K., Sailor M. J., Bhatia S. N., Cancer Res., 2009, 69(9), 3892—3900 |
13 | Huang X., Tang S., Mu X., Dai Y., Chen G., Zhou Z., Ruan F., Yang Z., Zheng N., Nat. Nanotechnol., 2011, 6(1), 28—32 |
14 | Liu X., Tao H., Yang K., Zhang S., Lee S. T., Liu Z., Biomaterials, 2011, 32(1), 144—151 |
15 | Hong H., Yang K., Zhang Y., Engle J. W., Feng L., Yang Y., Nayak T. R., Goel S., Bean J., Theuer C. P., Barnhart T. E., Liu Z., Cai W., ACS Nano, 2012, 6(3), 2361—2370 |
16 | Shi S., Yang K., Hong H., Valdovinos H. F., Nayak T. R., Zhang Y., Theuer C. P., Barnhart T. E., Liu Z., Cai W., Biomaterials, 2013, 34(12), 3002—3009 |
17 | Tian B., Wang C., Zhang S., Feng L., Liu Z., ACS Nano, 2011, 5(9), 7000—7009 |
18 | Wang H., Chang J., Shi M., Pan W., Li N., Tang B., Angew. Chem. Int. Ed.,2019, 58(4), 1057—1061 |
19 | Yu Z., Sun Q., Pan W., Li N., Tang B., ACS Nano, 2015, 9(11), 11064—11074 |
20 | Moon H., Kumar D., Kim H., Sim C., Chang J. H., Kim J. M., Kim H., Lim D. K., ACS Nano, 2015, 9(3), 2711—2719 |
21 | Ma D. Y., Li X. X., Guo Y. X., Zeng Y. R., Acta. Photon. Sin., 2017, 46(12), 1216002(马德跃, 李晓霞, 郭宇翔, 曾宇润. 光子学报, 2017, 46(12), 1216002) |
22 | Roper D. K., Ahn W., Hoepfner M., J. Phys. Chem. C. Nanomater Interfaces., 2007, 111(9), 3636—3641 |
23 | Tan L., Wang S., Xu K., Liu T., Liang P., Niu M., Fu C., Shao H., Yu J., Ma T., Ren X., Li H., Dou J., Ren J., Meng X., Small, 2016, 12(15), 2046—2055 |
24 | Rogers C. J., Dickerson T. J., Wentworth P., Janda K. D., Tetrahedron, 2005, 61(51), 12140—12144 |
25 | Price M., Reiners J. J., Santiago A. M., Kessel D., Photochem. Photobiol., 2009, 85(5), 1177—1181 |
26 | Yan F., Zhang Y., Kim K. S., Yuan H. K., Vo⁃Dinh T., Photochem. Photobiol., 2010, 86(3), 662—666 |
27 | Huang Y. F., Chang H. T., Tan W., Anal. Chem., 2008, 80(3), 567—572 |
28 | Tang Z., Zhu Z., Mallikaratchy P., Yang R., Sefah K., Tan W., Chem. Asian J., 2010, 5(4), 783—786 |
29 | Xu Y. X., Bai H., Lu G. W., Li C., Shi G., J. Am. Chem. Soc., 2008, 130(18), 5856—5857 |
30 | Xu Y. X., Zhao L., Bai H., Hong W., Li C., Shi G., J. Am. Chem. Soc., 2009, 131(37), 13490—13497 |
[1] | LIU Shuwei, JIN Hao, YIN Wanzhong, ZHANG Hao. Gemcitabine/polypyrrole Composite Nanoparticles for Chemo-photothermal Combination Ovarian Cancer Therapy [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220345. |
[2] | FAN Xiaohui, WANG Yang, YANG Yuanyuan, ZHANG Yuhong. Preparation and Properties of Gold Nanocages/Hyaluronic Acid Core-shell Nanocarriers with pH/Enzyme/ Photothermal Multiple Responses [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210855. |
[3] | LU Feng, GONG Yi, ZHAO Ting, ZHAO Ning, JU Wenwen, FAN Quli, HUANG Wei. Seedless Synthesis of Gold Nanorods with Narrow Absorption Using Binary Surfactant Mixture [J]. Chem. J. Chinese Universities, 2021, 42(3): 700. |
[4] | WU Fengren,LIU Yongjia,LU Xuemin,ZHU Bangshang. Controllable Preparation of Polydopamine Modified Gold Nanoflowers and Its Application in Photothermal Therapy [J]. Chem. J. Chinese Universities, 2020, 41(3): 465. |
[5] | SHAO Wei, LEE Jiyoung, LI Fangyuan, LING Daishun. Organic Small Molecule Nanoparticles for Phototheranostics [J]. Chem. J. Chinese Universities, 2020, 41(11): 2356. |
[6] | ZHANG Shupeng, CHENG Youxing, REN Lei, WEN Kai, LÜ Xiaolin, YE Shefang, ZHOU Xi. Reparation and Photothermal Properties of Prussian Blue Nanoparticles with Different Morphologies† [J]. Chem. J. Chinese Universities, 2018, 39(2): 359. |
[7] | WANG Xueli,WANG Zhenxin. Preparation of a Targeted Tumor Nanocomposites for Combined Photodynamic-photothermal Therapy Based on Partially Reduced Graphene Oxide† [J]. Chem. J. Chinese Universities, 2018, 39(10): 2185. |
[8] | BULIN Chaoke, GUO Ting, ZHANG Bangwen, DAI Zhian, YU Huitao, XING Ruiguang, ZI Luxiong. Fast Removal of Aqueous Mn(Ⅱ) Using Partially Reduced Graphene Oxide-Fe3O4† [J]. Chem. J. Chinese Universities, 2017, 38(2): 217. |
[9] | JIN Xintian, LIU Gang, LI Junzhe, SUN Lili, WANG Junrong, LI Junfeng, LI Pei, CHEN Wenqing, WANG Qiang, TONG Ti. Preparation of Hyaluronic Acid-modified Mesoporous Silica-coated Gold Nanorods and Their Application in Chemo-Photothermal Therapy of Cancer [J]. Chem. J. Chinese Universities, 2016, 37(2): 224. |
[10] | SONG Wen-Zhi, JIANG Ya-Ping, JI Xiao-Hui, ZHAO Li-Li, YIN Wan-Zhong, YANG Wen-Sheng. Inhibition Effect of NIR Photothermal Therapy Mediated by Gold Nanoflowers on Proliferation of Human Laryngocarcinoma Hep-2 Cells [J]. Chem. J. Chinese Universities, 2012, 33(09): 1886. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||