Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (6): 1694.doi: 10.7503/cjcu20200869
• Review • Previous Articles Next Articles
LI Peihong, ZHANG Chunling(), DAI Xueyan, SUI Yanlong
Received:
2020-12-16
Online:
2021-06-10
Published:
2021-06-08
Contact:
ZHANG Chunling
E-mail:clzhang@jlu.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Peihong, ZHANG Chunling, DAI Xueyan, SUI Yanlong. Progress of Graphene Oxide/Polymer Composite Hydrogel[J]. Chem. J. Chinese Universities, 2021, 42(6): 1694.
GO hydrogel | Gelation method | Gelation driving force | Performance and use | Ref. |
---|---|---|---|---|
GO/PVA | Mixing, sonication | H?bond | pH response | [ |
GO/PVA | Mixing, freeze?thaw | H?bond | pH response, self?healing, thermal stability | [ |
GO?RCE/PVA | Mixing, freeze?thaw | H?bond | pH response | [ |
GO/B?PVA/KCl | Mixing | Covalent bond, H?bond | Conductivity, self?healing | [ |
GO/SA/PVA | Mixing, freeze?thaw | H?bond | High strength, high swelling rate | [ |
GO/SA/NFA | Mixing | H?bond, ionic bond | Adsorption | [ |
GO/CS | Mixing | H?bond, electrostatic interaction | High strength, pH response | [ |
GO/CS | Mixing | Electrostatic interaction | Photo?thermal response | [ |
GO/QCEG/GM | Polymerization | Covalent bond | Photo?thermal response, conductivity, wound dressing | [ |
GO?Ag/CH | Mixing | H?bond | pH response, drug delivery | [ |
GO/CMC | Mixing | H?bond | pH response, drug delivery | [ |
GO/DNA | Mixing, heating | H?bond, electrostatic interaction, π?π stacking, hydrophobic interaction | Adsorption, self?healing | [ |
GO/PEI | Mixing, sonication | H?bond, electrostatic interaction | Adsorption | [ |
GO/F127 | Mixing | H?bond | pH response, drug delivery | [ |
GO/PyGAGAGY | Mixing | π?π stacking | Photo?thermal response, drug delivery | [ |
GO/Hb | Mixing | Electrostatic interaction | Enzyme catalysis | [ |
GO hydrogel | Gelation method | Gelation driving force | Performance and use | Ref. |
GO/KGM | Mixing | H?bond | Drug delivery | [ |
GO/PNIPAM | Polymerization | Covalent bond | Photo?thermal response | [ |
GO/PNIPAM/CS | Polymerization | Covalent bond | Stretchability, conductivity, self?healing | [ |
GO/P(NIPAM?MAA) | PEI crosslinking | Covalent bond, H?bond | Thermal and pH responsive membrane | [ |
GO/PNIPAM GO/PDMAA | Polymerization | Covalent bond | Self?healing, photo?thermal response, NIR drive valve | [ |
GO/Laponite/P(AMPS?co?DMAAm) | Polymerization | Covalent bond, H?bond | Thermal response, injectable | [ |
GO/gelation | NTP crosslinking | Covalent bond | Cartilage reconstructive | [ |
GO/cellulose | ECH crosslinking | Covalent bond | Adsorption, compression resistance | [ |
GO/PAA/cellulose | Electro beam radiation | Covalent bond | Wound dressing | [ |
PDA/pGO/PAM | Mixing, polymerization | Covalent bond, H?bond, electrostatic interaction, π?π stacking | High strength, conductivity, adhesion, self?healing | [ |
GO/PAM | Polymerization | Covalent bond, ionic bond | Stretchability | [ |
GO/P(AM?co?DAC) | Polymerization | Covalent bond, ionic bond, H?bond | High strength, compression resistance, self?healing | [ |
GO/PAA?g?AM | Mixing | H?bond, electrostatic interaction | Thermal stability, high strength | [ |
GO/PAA | Polymerization | Covalent bond, ionic bond | High strength, self?healing | [ |
GO/PAACA | Polymerization | Covalent bond, ionic bond | Stretchability | [ |
GO/PSBMA | Polymerization | Covalent bond | High strength, lubricity, artificial cartilage | [ |
GO/PPy | Polymerization | Covalent bond, H?bond, electrostatic interaction, π?π stacking | Gas sensor | [ |
GO hydrogel | Gelation method | Gelation driving force | Performance and use | Ref. |
---|---|---|---|---|
GO/PVA | Mixing, sonication | H?bond | pH response | [ |
GO/PVA | Mixing, freeze?thaw | H?bond | pH response, self?healing, thermal stability | [ |
GO?RCE/PVA | Mixing, freeze?thaw | H?bond | pH response | [ |
GO/B?PVA/KCl | Mixing | Covalent bond, H?bond | Conductivity, self?healing | [ |
GO/SA/PVA | Mixing, freeze?thaw | H?bond | High strength, high swelling rate | [ |
GO/SA/NFA | Mixing | H?bond, ionic bond | Adsorption | [ |
GO/CS | Mixing | H?bond, electrostatic interaction | High strength, pH response | [ |
GO/CS | Mixing | Electrostatic interaction | Photo?thermal response | [ |
GO/QCEG/GM | Polymerization | Covalent bond | Photo?thermal response, conductivity, wound dressing | [ |
GO?Ag/CH | Mixing | H?bond | pH response, drug delivery | [ |
GO/CMC | Mixing | H?bond | pH response, drug delivery | [ |
GO/DNA | Mixing, heating | H?bond, electrostatic interaction, π?π stacking, hydrophobic interaction | Adsorption, self?healing | [ |
GO/PEI | Mixing, sonication | H?bond, electrostatic interaction | Adsorption | [ |
GO/F127 | Mixing | H?bond | pH response, drug delivery | [ |
GO/PyGAGAGY | Mixing | π?π stacking | Photo?thermal response, drug delivery | [ |
GO/Hb | Mixing | Electrostatic interaction | Enzyme catalysis | [ |
GO hydrogel | Gelation method | Gelation driving force | Performance and use | Ref. |
GO/KGM | Mixing | H?bond | Drug delivery | [ |
GO/PNIPAM | Polymerization | Covalent bond | Photo?thermal response | [ |
GO/PNIPAM/CS | Polymerization | Covalent bond | Stretchability, conductivity, self?healing | [ |
GO/P(NIPAM?MAA) | PEI crosslinking | Covalent bond, H?bond | Thermal and pH responsive membrane | [ |
GO/PNIPAM GO/PDMAA | Polymerization | Covalent bond | Self?healing, photo?thermal response, NIR drive valve | [ |
GO/Laponite/P(AMPS?co?DMAAm) | Polymerization | Covalent bond, H?bond | Thermal response, injectable | [ |
GO/gelation | NTP crosslinking | Covalent bond | Cartilage reconstructive | [ |
GO/cellulose | ECH crosslinking | Covalent bond | Adsorption, compression resistance | [ |
GO/PAA/cellulose | Electro beam radiation | Covalent bond | Wound dressing | [ |
PDA/pGO/PAM | Mixing, polymerization | Covalent bond, H?bond, electrostatic interaction, π?π stacking | High strength, conductivity, adhesion, self?healing | [ |
GO/PAM | Polymerization | Covalent bond, ionic bond | Stretchability | [ |
GO/P(AM?co?DAC) | Polymerization | Covalent bond, ionic bond, H?bond | High strength, compression resistance, self?healing | [ |
GO/PAA?g?AM | Mixing | H?bond, electrostatic interaction | Thermal stability, high strength | [ |
GO/PAA | Polymerization | Covalent bond, ionic bond | High strength, self?healing | [ |
GO/PAACA | Polymerization | Covalent bond, ionic bond | Stretchability | [ |
GO/PSBMA | Polymerization | Covalent bond | High strength, lubricity, artificial cartilage | [ |
GO/PPy | Polymerization | Covalent bond, H?bond, electrostatic interaction, π?π stacking | Gas sensor | [ |
1 | Park S., Ruoff R. S., Nat. Nanotechnol., 2009, 4(4), 217—224 |
2 | Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R., Ruoff R. S., Adv. Mater., 2010, 22(35), 3906—3924 |
3 | Paci J. T., Belytschko T., Schatz G. C., J. Phys. Chem. C, 2007, 111(49), 18099—18111 |
4 | Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S., Chem. Soc. Rev., 2010, 39(1), 228—240 |
5 | Loh K. P., Bao Q., Eda G., Chhowalla M., Nat. Chem., 2010, 2(12), 1015—1024 |
6 | Huang X., Qi X., Boey F., Zhang H., Chem. Soc. Rev., 2012, 41(2), 666—686 |
7 | He Q., Wu S., Yin Z., Zhang H., Chem. Sci., 2012, 3(6), 1764—1772 |
8 | Chang H., Wu H., Energy Environ. Sci., 2013, 6(12), 3483—3507 |
9 | Sharma P. S., D’Souza F., Kutner W.; Eds. Marcaccio M., Paolucci F., Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes Berlin, Springer Berlin Heidelberg, Heidelberg, 2014, 237—265 |
10 | Bai H., Li C., Wang X., Shi G., Chem. Commun., 2010, 46(14), 2376—2378 |
11 | Klouda L., Eur. J. Pharm. Biopharm., 2015, 97(Pt B), 338—349 |
12 | Liu Y. X., Chen L., Zhao Z. G., Fang R. C., Liu M. J., Acta Polym. Sin., 2018, 9, 1155—1174(刘玉霞, 陈列, 赵紫光, 房若辰, 刘明杰. 高分子学报, 2018, 9, 1155—1174) |
13 | Cai Z. X., Zhang B., Jiang L. Y., Li Y. Y., Xu G. H., Ma J. J., Prog. Chem., 2019, 31(12), 1653—1668(蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 化学进展, 2019, 31(12), 1653—1668) |
14 | Yu Q. L., Li Z., Dou C. Y., Zhao Y. P., Gong J. X., Zhang J. F., Prog. Chem., 2020, 32(Z1), 179—189(于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. 化学进展, 2020, 32(Z1), 179—189) |
15 | Li P., Hou X., Qu L., Dai X., Zhang C., Polymers, 2018, 10(2), 137 |
16 | Li P., Kim N. H., Hui D., Rhee K. Y., Lee J. H., Appl. Clay Sci., 2009, 46(4), 414—417 |
17 | Li L., Du X., Deng J., Yang W., React. Funct. Polym., 2011, 71(9), 972—979 |
18 | Rennerfeldt D. A., Renth A. N., Talata Z., Gehrke S. H., Detamore M. S., Biomaterials, 2013, 34(33), 8241—8257 |
19 | Baek K., Clay N. E., Qin E. C., Sullivan K. M., Kim D. H., Kong H., Eur. Polym. J., 2015, 72, 413—422 |
20 | Li D., Müller M. B., Gilje S., Kaner R. B., Wallace G. G., Nat. Nanotechnol., 2008, 3(2), 101—105 |
21 | Gilje S., Han S., Wang M., Wang K. L., Kaner R. B., Nano Lett., 2007, 7(11), 3394—3398 |
22 | Dikin D. A., Stankovich S., Zimney E. J., Piner R. D., Dommett G. H. B., Evmenenko G., Nguyen S. T., Ruoff R. S., Nature, 2007, 448(7152), 457—460 |
23 | Kim J., Cote L. J., Kim F., Yuan W., Shull K. R., Huang J., J. Am. Chem. Soc., 2010, 132, 8180—8186 |
24 | Cong H. P., Chen J. F., Yu S. H., Chem. Soc. Rev., 2014, 43(21), 7295—7325 |
25 | Li P., Dai X., Sui Y., Li R., Zhang C., Soft Matter, 2021, DOI: 10.1039/D1SM00151 |
26 | Bai H., Li C., Wang X., Shi G., J. Phys. Chem. C, 2011, 115(13), 5545—5551 |
27 | Jiang Y., Yang T., Fei G. X., Xia H. S., Polym. Mater. Sci. Eng., 2018, 34(7), 150—155(蒋瑶, 杨涛, 费国霞, 夏和生. 高分子材料科学与工程, 2018, 34(7), 150—155) |
28 | Abdollahi R., Taghizadeh M. T., Savani S., Polym. Degrad. Stab., 2018, 147, 151—158 |
29 | Duan J., Liu F., Kong Y., Hao M., He J., Wang J., Wang S., Liu H., Sang Y., ACS Appl. Nano Mater., 2020, 3(2), 1002—1009 |
30 | Huang C., Bai H., Li C., Shi G., Chem. Commun., 2011, 47(17), 4962—4964 |
31 | Bai H., Sheng K., Zhang P., Li C., Shi G., J. Mater. Chem., 2011, 21(46), 18653—18658 |
32 | Han X., Liu Y., Xiong L., Huang H., Zhang Q., Li L., Yu X., Wei L., Polym. Compos., 2019, 40(S2), E1777—E1785 |
33 | Wang Z., Li J., Jiang L., Xiao S., Liu Y., Luo J., Langmuir, 2019, 35(35), 11452—11462 |
34 | Chen X., Zhou S., Zhang L., You T., Xu F., Materials, 2016, 9(7), 582 |
35 | Ionov L., Adv. Funct. Mater., 2013, 23(36), 4555—4570 |
36 | Buenger D., Topuz F., Groll J., Prog. Polym. Sci., 2012, 37(12), 1678—1719 |
37 | Shaibani P. M., Etayash H., Naicker S., Kaur K., Thundat T., ACS Sens., 2017, 2(1), 151—156 |
38 | Hou J., Zhang H., Yang Q., Li M., Jiang L., Song Y., Small, 2015, 11(23), 2738—2742 |
39 | Cai Z., Sasmal A., Liu X., Asher S. A., ACS Sens., 2017, 2(10), 1474—1481 |
40 | Wang L., Liu Y., Cheng Y., Cui X., Lian H., Liang Y., Chen F., Wang H., Guo W., Li H., Zhu M., Ihara H., Adv. Sci., 2015, 2(6), 1500084 |
41 | Stumpel J. E., Ziółkowski B., Florea L., Diamond D., Broer D. J., Schenning A. P. H. J., ACS Appl. Mater. Interfaces, 2014, 6(10), 7268—7274 |
42 | Li J., Bisoyi H. K., Tian J., Guo J., Li Q., Adv. Mater., 2019, 31(10), 1807751 |
43 | Wang Z. J., Li C. Y., Zhao X. Y., Wu Z. L., Zheng Q., J. Mater. Chem. B, 2019, 7(10), 1674—1678 |
44 | Du X., Cui H., Sun B., Wang J., Zhao Q., Xia K., Wu T., Humayun M. S., Adv. Mater. Technol., 2017, 2(10), 1700120 |
45 | Zong L., Li M., Li C., Adv. Mater., 2017, 29(10), 1604691 |
46 | Wang E., Desai M. S., Lee S.W., Nano Lett., 2013, 13(6), 2826—2830 |
47 | ter Schiphorst J., Coleman S., Stumpel J. E., Ben Azouz A., Diamond D., Schenning A. P. H. J., Chem. Mater., 2015, 27(17), 5925—5931 |
48 | Jadhav A. D., Yan B., Luo R. C., Wei L., Zhen X., Chen C. H., Shi P., Biomicrofluidics, 2015, 9(3), 034114 |
49 | Cheng Y., Ren K., Huang C., Wei J., Sens. Actuators, B, 2019, 298, 126908 |
50 | Acik M., Lee G., Mattevi C., Chhowalla M., Cho K., Chabal Y. J., Nat. Mater., 2010, 9(10), 840—845 |
51 | Robinson J. T., Tabakman S. M., Liang Y., Wang H., Sanchez Casalongue H., Vinh D., Dai H., J. Am. Chem. Soc., 2011, 133(17), 6825—6831 |
52 | Wu J., Chen A., Qin M., Huang R., Zhang G., Xue B., Wei J., Li Y., Cao Y., Wang W., Nanoscale, 2015, 7(5), 1655—1660 |
53 | Zhu C. H., Lu Y., Peng J., Chen J. F., Yu S. H., Adv. Funct. Mater., 2012, 22(19), 4017—4022 |
54 | Xie R. H., Ren P. G., Hui J., Ren F., Ren L. Z., Sun Z. F., Carbohydr. Polym., 2016, 138, 222—228 |
55 | Zhang Y., Zhang M., Jiang H., Shi J., Li F., Xia Y., Zhang G., Li H., Carbohydr. Polym., 2017, 177, 116—125 |
56 | Wang S., Zhang Z., Chen B., Shao J., Guo Z., J. Appl. Polym. Sci., 2018, 135(17), 46143 |
57 | Liu H., Zhu J., Hao L., Jiang Y., van der Bruggen B., Sotto A., Gao C., Shen J., J. Membr. Sci., 2019, 587, 117163 |
58 | Syrett J. A., Becer C. R., Haddleton D. M., Polym. Chem., 2010, 1(7), 978—987 |
59 | Murphy E. B., Wudl F., Prog. Polym. Sci., 2010, 35(1/2), 223—251 |
60 | Taylor D. L., In Het Panhuis M., Adv. Mater., 2016, 28(41), 9060—9093 |
61 | Qi H. Z., Zhao Y. H., Zhu K. Y., Yuan X. Y., Prog. Chem., 2011, 23(12), 2560—2567(祁恒治, 赵蕴慧, 朱孔营, 袁晓燕. 化学进展, 2011, 23(12), 2560—2567) |
62 | Xu Y., Wu Q., Sun Y., Bai H., Shi G., ACS Nano, 2010, 4(12), 7358—7362 |
63 | Han L., Lu X., Wang M., Gan D., Deng W., Wang K., Fang L. , Liu K., Chan C. W., Tang Y., Weng L. T., Yuan H., Small, 2017, 13(2), 1601916 |
64 | Pan C., Liu L., Chen Q., Zhang Q., Guo G., ACS Appl. Mater. Interfaces, 2017, 9(43), 38052—38061 |
65 | Shen J., Yan B., Li T., Long Y., Li N., Ye M., Soft Matter, 2012, 8(6), 1831—1836 |
66 | Liu R., Liang S., Tang X. Z., Yan D., Li X., Yu Z. Z., J. Mater. Chem., 2012, 22(28), 14160—14167 |
67 | Cong H. P., Wang P., Yu S. H., Chem. Mater., 2013, 25(16), 3357—3362 |
68 | Cong H.P., Wang P., Yu S. H., Small, 2014, 10(3), 448—453 |
69 | Zhong M., Liu Y. T., Xie X. M., J. Mater. Chem. B, 2015, 3(19), 4001—4008 |
70 | Li H., Lv T., Sun H., Qian G., Li N., Yao Y., Chen T., Nat. Commun., 2019, 10(1), 536 |
71 | Rasoulzadeh M., Namazi H., Carbohydr. Polym., 2017, 168, 320—326 |
72 | Yuan Y., Yan Z., Mu R. J., Wang L., Gong J., Hong X., Haruna M. H., Pang J., J. Appl. Polym. Sci., 2017, 134(38), 4532 |
73 | Li B., Zhang L., Zhang Z., Gao R., Li H., Dong Z., Wang Q., Zhou Q., Wang Y., RSC Adv., 2018, 8(3), 1693—1699 |
74 | Javanbakht S., Pooresmaeil M., Namazi H., Carbohydr. Polym., 2019, 208, 294—301 |
75 | Pooresmaeil M., Namazi H., Polym. Adv. Technol., 2019, 30(2), 447—456 |
76 | Rasoulzadehzali M., Namazi H., Int. J. Biol. Macromol., 2018, 116, 54—63 |
77 | Nie L., Chen D., Zhong S., Shi Q., Sun Y., Politis C., Shavandi A., Mater. Lett., 2020, 280, 128572 |
78 | Chen X. Y., Low H. R., Loi X. Y., Merel L., Mohd Cairul Iqbal M. A., J. Biomed. Mater. Res., Part B, 2019, 107(6), 2140—2151 |
79 | Liang Y., Chen B., Li M., He J., Yin Z., Guo B., Biomacromolecules, 2020, 21(5), 1841—1852 |
80 | Li X. X., Dong J. Y., Li Y. H., Zhong J., Yu H., Yu Q. Q., Lei M., Appl. Nanosci., 2019, 10(3), 729—738 |
81 | Satapathy M. K., Manga Y. B., Ostrikov K. K., Chiang W. H., Pandey A., R L., Nyambat B., Chuang E. Y., Chen C. H., ACS Appl. Mater. Interfaces, 2020, 12(1), 86—95 |
82 | Chen Z., Wu J., Wang Y., Shao C., Chi J., Li Z., Wang X., Zhao Y., Small, 2019, 15(37), 1903104 |
83 | Peng H., Lv Y., Wei G., Zhou J., Gao X., Sun K., Ma G., Lei Z., J. Power Sources, 2019, 431, 210—219 |
84 | Fu H. Y., Lu C., Huang Y. H., Li J., Wu Y. J., J. Porous Mater., 2019, 27(1), 11—19 |
85 | Zhu K., Jiao T., Zhang L., Xing R., Guo R., Zhou J., Hou C., Zhang Q., Peng Q., Li X., Sci. Adv. Mater., 2016, 8(7), 1400—1407 |
86 | Arshad F., Selvaraj M., Zain J., Banat F., Haija M. A., Sep. Purif. Technol., 2019, 209, 870—880 |
87 | Guo H., Jiao T., Zhang Q., Guo W., Peng Q., Yan X., Nanoscale Res. Lett., 2015, 10(1), 272 |
88 | Kong W., Yue Q., Li Q., Gao B., Sci. Total Environ., 2019, 668, 1165—1174 |
89 | Peng S., Zhang D., Huang H., Jin Z., Peng X., Res. Chem. Intermed., 2018, 45(3), 1545—1563 |
90 | Yao G., Bi W., Liu H., Colloids Surf. A, 2020, 588, 124393 |
91 | Liu H., Pan B., Wang Q., Niu Y., Tai Y., Du X., Zhang K., Chemosphere, 2021, 263, 128240 |
92 | Sarkar N., Sahoo G., Swain S. K., J. Mol. Liq., 2020, 302, 112591 |
93 | Saha S., Venkatesh M., Basu H., Pimple M. V., Singhal R. K., J. Environ. Chem. Eng., 2019, 7(3), 103134 |
[1] | WANG Xuebin, XUE Yuan, MAO Hua’nyu, XIANG Yanxin, BAO Chunyan. Preparation of Photo/reduction Dual-responsive Hydrogel Microspheres and Their Application in Three-dimensional Cell Culture [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220116. |
[2] | HUANG Yi, LYU Lingling, PAN Xiaopeng, SUN Guangdong, LI Yongqiang, YAO Juming, SHAO Jianzhong. Three-dimensional Printing of Photocrosslinked Self-supporting Silk Fibroin Hydrogels [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210841. |
[3] | ZHOU Yonghui, LI Yao, WU Yuxuan, TIAN Jing, XU Longquan, FEI Xu. Synthesis of A Novel Photoluminescence Self-healing Hydrogel [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210606. |
[4] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[5] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[6] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[7] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[8] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[9] | YAN Shuting, YAO Yuan, TAO Xinfeng, LIN Shaoliang. Synthesis and Properties of Polypeptoid Hydrogels Containing Sulfonium Groups [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220381. |
[10] | GAO Huiling, CAO Zhenzhen, GU Fang, WANG Haijun. Monte Carlo Simulation on Self-healing Behaviour of Hydrogen-bonded Hydrogel [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220482. |
[11] | CAI Yaqian, ZHANG Jiahuai, LIU Fangzhe, LI Haichao, SHI Jianping, GUAN Shuang. Protein-based Hydrogel Assisted by Hofmeister Effect for Strain Sensor [J]. Chem. J. Chinese Universities, 2021, 42(8): 2609. |
[12] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[13] | LUO Chunhui, ZHAO Yufei. Facile Synthesis and Properties of Robust and Anti-swelling Hydrogels [J]. Chem. J. Chinese Universities, 2021, 42(6): 2024. |
[14] | WANG Aqiang, ZHU Yuzhang, JIN Jian. Preparation of Carboxyl-betaine Polyurethane Hydrogel and Study on Its Underwater Anti-crude-oil-adhesion Property [J]. Chem. J. Chinese Universities, 2021, 42(4): 1246. |
[15] | WANG Jie, LI Ying, SHAO Liang, BAI Yang, MA Zhonglei, MA Jianzhong. Preparation and Properties of Poly(vinyl alcohol)/polypyrrole Composite Conductive Hydrogel Strain Sensor [J]. Chem. J. Chinese Universities, 2021, 42(3): 929. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||