Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (10): 2135.doi: 10.7503/cjcu20190267
• Physical Chemistry • Previous Articles Next Articles
CHEN Tao1,FANG Lei1,LUO Wei1,MENG Yue2,XUE Jilong1,XIA Shengjie1,*(),NI Zheming1,*(
)
Received:
2019-05-10
Online:
2019-10-08
Published:
2019-09-27
Contact:
XIA Shengjie,NI Zheming
E-mail:xiasj@zjut.edu.cn;jchx@zjut.edu.cn
Supported by:
CLC Number:
TrendMD:
CHEN Tao,FANG Lei,LUO Wei,MENG Yue,XUE Jilong,XIA Shengjie,NI Zheming. Theoretical Study of Dry Reforming of Methane Catalyzed by Bimetallic Alloy Cluster M12Ni(M=Pt, Sn, Cu) [J]. Chem. J. Chinese Universities, 2019, 40(10): 2135.
Species | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Optimum adsorption site | Eads/eV | Optimum adsorption site | Eads/eV | Optimum adsorption site | Eads/eV | |
C | TOP | -0.282 | HOL | -0.201 | TOP | -0.267 |
C | TOP | -2.626 | HOL | -2.008 | TOP | -2.393 |
C | HOL | -4.713 | TOP | -2.973 | TOP | -4.276 |
CH* | HOL | -6.744 | BRI | -4.530 | TOP | -6.033 |
C* | HOL | -7.102 | HOL | -3.655 | TOP | -5.879 |
C | HOL | -0.596 | HOL | -0.186 | BRI | -0.524 |
CO* | TOP | -2.534 | HOL | -0.217 | TOP | -1.656 |
H* | TOP | -2.933 | TOP | -2.123 | HOL | -2.858 |
TOP | -1.192 | BRI | -0.134 | BRI | -0.403 | |
O* | HOL | -4.501 | BRI | -4.567 | BRI | -5.786 |
OH* | BRI | -2.976 | BRI | -2.850 | HOL | -3.844 |
H2O* | HOL | -0.589 | HOL | -0.263 | TOP | -0.632 |
CHO* | BRI | -3.968 | BRI | -1.464 | BRI | -3.125 |
COH* | HOL | -4.009 | TOP | -3.024 | TOP | -3.913 |
COOH* | TOP | -3.114 | HOL | -1.824 | BRI | -2.799 |
CHOH* | HOL | -3.719 | BRI | -1.823 | BRI | -3.157 |
Species | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Optimum adsorption site | Eads/eV | Optimum adsorption site | Eads/eV | Optimum adsorption site | Eads/eV | |
C | TOP | -0.282 | HOL | -0.201 | TOP | -0.267 |
C | TOP | -2.626 | HOL | -2.008 | TOP | -2.393 |
C | HOL | -4.713 | TOP | -2.973 | TOP | -4.276 |
CH* | HOL | -6.744 | BRI | -4.530 | TOP | -6.033 |
C* | HOL | -7.102 | HOL | -3.655 | TOP | -5.879 |
C | HOL | -0.596 | HOL | -0.186 | BRI | -0.524 |
CO* | TOP | -2.534 | HOL | -0.217 | TOP | -1.656 |
H* | TOP | -2.933 | TOP | -2.123 | HOL | -2.858 |
TOP | -1.192 | BRI | -0.134 | BRI | -0.403 | |
O* | HOL | -4.501 | BRI | -4.567 | BRI | -5.786 |
OH* | BRI | -2.976 | BRI | -2.850 | HOL | -3.844 |
H2O* | HOL | -0.589 | HOL | -0.263 | TOP | -0.632 |
CHO* | BRI | -3.968 | BRI | -1.464 | BRI | -3.125 |
COH* | HOL | -4.009 | TOP | -3.024 | TOP | -3.913 |
COOH* | TOP | -3.114 | HOL | -1.824 | BRI | -2.799 |
CHOH* | HOL | -3.719 | BRI | -1.823 | BRI | -3.157 |
Elementary reaction | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | |
C | 0.295 | -0.252 | 2.981 | 1.687 | 1.142 | 0.009 |
C | 0.577 | -0.003 | 3.809 | 2.348 | 1.548 | 0.322 |
C | 0.187 | -0.160 | 0.802 | 0.016 | 0.031 | -0.004 |
CH*=C*+H* | 0.238 | -0.717 | 2.809 | 2.306 | 0.601 | 0.005 |
Elementary reaction | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | |
C | 0.295 | -0.252 | 2.981 | 1.687 | 1.142 | 0.009 |
C | 0.577 | -0.003 | 3.809 | 2.348 | 1.548 | 0.322 |
C | 0.187 | -0.160 | 0.802 | 0.016 | 0.031 | -0.004 |
CH*=C*+H* | 0.238 | -0.717 | 2.809 | 2.306 | 0.601 | 0.005 |
Elementary reaction | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | |
C | 0.710 | 0.354 | 3.337 | 3.049 | 1.284 | -0.145 |
C | 0.499 | 0.035 | 3.316 | 0.204 | 4.607 | 1.228 |
COOH*=CO*+OH* | 1.180 | -0.235 | 1.494 | 0.657 | 0.589 | -0.787 |
Elementary reaction | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | |
C | 0.710 | 0.354 | 3.337 | 3.049 | 1.284 | -0.145 |
C | 0.499 | 0.035 | 3.316 | 0.204 | 4.607 | 1.228 |
COOH*=CO*+OH* | 1.180 | -0.235 | 1.494 | 0.657 | 0.589 | -0.787 |
Elementary reaction | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | |
C*+O*=CO* | 0.150 | -0.481 | 0.046 | -0.006 | 0.235 | -0.020 |
C*+OH*=COH* | 1.413 | 0.822 | 0.140 | 0.017 | 0.642 | -0.003 |
COH*=CO*+H* | 1.372 | -2.013 | 1.736 | -1.101 | 1.872 | -1.295 |
CH*+O*=CHO* | 0.222 | 0.036 | 0.049 | -0.235 | 1.983 | -0.195 |
CHO*=CO*+H* | 0.092 | -1.041 | 1.576 | 0.434 | 0.396 | -0.679 |
CH*+OH*=CHOH* | 3.536 | 1.460 | 0.964 | 0.239 | 1.541 | 0.850 |
CHOH*=CHO*+H* | 2.541 | -0.889 | 2.378 | -1.060 | 0.012 | -0.850 |
CHOH*=COH*+H* | 3.081 | 0.340 | 2.394 | 1.663 | 0.920 | -0.003 |
Elementary reaction | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | |
C*+O*=CO* | 0.150 | -0.481 | 0.046 | -0.006 | 0.235 | -0.020 |
C*+OH*=COH* | 1.413 | 0.822 | 0.140 | 0.017 | 0.642 | -0.003 |
COH*=CO*+H* | 1.372 | -2.013 | 1.736 | -1.101 | 1.872 | -1.295 |
CH*+O*=CHO* | 0.222 | 0.036 | 0.049 | -0.235 | 1.983 | -0.195 |
CHO*=CO*+H* | 0.092 | -1.041 | 1.576 | 0.434 | 0.396 | -0.679 |
CH*+OH*=CHOH* | 3.536 | 1.460 | 0.964 | 0.239 | 1.541 | 0.850 |
CHOH*=CHO*+H* | 2.541 | -0.889 | 2.378 | -1.060 | 0.012 | -0.850 |
CHOH*=COH*+H* | 3.081 | 0.340 | 2.394 | 1.663 | 0.920 | -0.003 |
Elementary reaction | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | |
H*+H*= | 0.389 | 0.002 | 0.668 | -1.128 | 1.296 | 0.619 |
H*+OH*=H2O | 0.617 | -0.378 | 0.343 | -1.132 | 1.954 | 0.343 |
Elementary reaction | Pt12Ni | Sn12Ni | Cu12Ni | |||
---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | |
H*+H*= | 0.389 | 0.002 | 0.668 | -1.128 | 1.296 | 0.619 |
H*+OH*=H2O | 0.617 | -0.378 | 0.343 | -1.132 | 1.954 | 0.343 |
[1] | Cao P. F., Adegbite S., Zhao H. T., Lester E., Wu T. , Appl. Energ., 2018,227, 190— 197 |
[2] | Saché E. L., Pastor-Pérez L., Watson D., Sepúlveda-Escribano A., Reina T. R. , Appl. Catal. B:Environ., 2018,236, 458— 465 |
[3] | Zhu Y. A., Chen D., Zhou X. G., Yuan W. K. , Catal. Today, 2009,148, 260— 267 |
[4] | Fujita T., Peng X. B., Yamaguchi A., Cho Y., Zhang Y. Z. Higuchi K., Yamamoto Y., Tokunaga T., Arai S., Miyauchi M., Abe H. , ACS Omega, 2018,3(12), 16651— 16657 |
[5] | Newnham J., Mantri K., Amin M. H., Tardio J., Bhargava S. K. , Int. J. Hydrogen Energ., 2012,37(2), 1454— 1464 |
[6] | Vasconcelos B. R. D., Minh D. P., Lyczko N., Phan T. S. Sharrock P., Nzihou A. , Fuel, 2018,226, 195— 203 |
[7] | Fan C., Zhu Y. A., Xu Y., Zhou Y., Zhou X. G. Chen D. , J. Chem. Phys., 2012,137(1), 014703 |
[8] | Guharoy U., Sache E. L., Cai Q., Reina T. R., Gu S. , J. CO2. Util., 2018,7, 1— 10 |
[9] | Nataj S. M. M., Alavi S. M., Mazloom G. , J. Nat. Gas. Chem., 2018,27(5), 1475— 1488 |
[10] | García-Diéguez M., Pieta I. S., Herrera M. C., Larrubia M. A., Alemany L. J. , J. Catal., 2010,270(1), 136— 145 |
[11] | Steinhauer B., Kasireddy M. R., Radnik J., Martin A. , Appl. Catal. A:Gen., 2009,366(2), 333— 341 |
[12] | Wu S. K., Lin R. J., Jang S., Chen H. L., Wang S. M., Li F. Y. J. Phys. Chem. C, 2014,118(1), 298— 309 |
[13] | Xu G. L., Zhang L., He C. Z., Ma D. W., Lu Z. S. Sensor. Actuat. B:Chem., 2015,221, 717— 722 |
[14] | Mahammedi N. A., Ferhat M., Belkada R. , Superlattice Microst., 2016,100, 296— 305 |
[15] | Ge Q., Jenkins S. J.., King D. A. , Chem. Phys. Lett., 2000,327, 125— 130 |
[16] | Liu J., Wen S. M., Wang Y. J., Deng J. S., Chen X. M. , Int. J. Miner. Process, 2016,147, 28— 30 |
[17] | Zhao F. F., Liu C., Wang P., Huang S. P. Tian H. P. , J. Alloy Compd., 2013,577, 669— 676 |
[18] | Fang L., Xia S. J., Xue J. L., Meng Y., Qian M. D., Luo W., Zhang X. F., Ni Z. M. , Chem. J. Chinese Universities, 2018,39(8), 1721— 1728 |
( 方镭, 夏盛杰, 薛继龙, 孟跃, 钱梦丹, 罗伟, 张晓锋, 倪哲明 . 高等学校化学学报, 2018,39(8), 1721— 1728) | |
[19] | Jiang J. H., Cao Y. Y., Ni Z. M., Zhang L. Y. , J. Fuel Chem. Technol., 2016,44(8), 961— 969 |
( 蒋军辉, 曹勇勇, 倪哲明, 张连阳 . 燃料化学学报, 2016,44(8), 961— 969) | |
[20] | Ham H. C., Hwang G. S., Han J., Nam S. W., Lim T. H. , J. Phys. Chem. C, 2010,114, 14922— 14928 |
[21] | Ray K., Bhardwaj R., Singh B., Deo G., Phys. Chem. Chem. Phys., 2018,20, 15939— 15950 |
[22] | Rad A. S. , Appl. Surf. Sci., 2015,357, 1217— 1224 |
[23] | Prats H., Gutierrez R. A., Pinero J. J., Vines F., Bromley S. T. Ramirez P. J., Rodriguez J. A., Illas F. , J. Am. Chem. Soc., 2019,141, 5303— 5313 |
[24] | Guharoy U., Reina T. R., Olsson E., Gu S., Cai Q. , ACS Catal., 2019,9, 3487— 3497 |
[25] | Xing B., Pang X. Y., Wang G. C., Shang Z. F. , J. Mol. Catal. A:Chem., 2010,315, 187— 196 |
[26] | Li M. R., Lu Z., Wang G. C. , Catal. Sci. Technol., 2017,7(16), 3613— 3625 |
[27] | Qi Q. H., Wang X. J., Chen L., Li B. T. , Appl. Surf. Sci., 2013,284, 784— 791 |
[28] | Liu H. Y., Zhang R. G., Yan R. X., Li J. R. , Wang B. J., Xie K. C. , Appl. Surf. Sci., 2012,258, 8177— 8184 |
[29] | Guo D., Wang G. C. , J. Phys. Chem. C, 2017,121(47), 26308— 26320 |
[1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
[4] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[5] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[6] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[7] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[8] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[9] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
[10] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[11] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
[12] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[13] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
[14] | ZHENG Ruoxin, ZHANG Igor Ying, XU Xin. Development and Benchmark of Lower Scaling Doubly Hybrid Density Functional XYG3 [J]. Chem. J. Chinese Universities, 2021, 42(7): 2210. |
[15] | YING Fuming, JI Chenru, SU Peifeng, WU Wei. λ-DFCAS: A Hybrid Density Functional Complete Active Space Self Consistent Field Method [J]. Chem. J. Chinese Universities, 2021, 42(7): 2218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||