Chem. J. Chinese Universities ›› 2014, Vol. 35 ›› Issue (7): 1471.doi: 10.7503/cjcu20140210
• Physical Chemistry • Previous Articles Next Articles
LI Qian, GENG Yun, DUAN Yuai, WANG Guangyu, SU Zhongmin*()
Received:
2014-03-13
Online:
2014-07-10
Published:
2014-05-26
Contact:
SU Zhongmin
E-mail:zmsu@nenu.edu.cn
CLC Number:
TrendMD:
LI Qian, GENG Yun, DUAN Yuai, WANG Guangyu, SU Zhongmin. Theoretical Studies on the Carrier Transport Properties of Halogen, Cyan Group and N-atom Modified Tetrathiafulvalene Derivatives†[J]. Chem. J. Chinese Universities, 2014, 35(7): 1471.
Molecule | λh/meV | λe/meV | Molecule | λh/meV | λe/meV |
---|---|---|---|---|---|
1 | 236 | 137 | 4 | 236 | 202 |
2 | 225 | 186 | 5 | 227 | 184 |
3 | 252 | 227 | 6 | 215 | 163 |
Table 1 Calculated λh and λe of molecules 1—6
Molecule | λh/meV | λe/meV | Molecule | λh/meV | λe/meV |
---|---|---|---|---|---|
1 | 236 | 137 | 4 | 236 | 202 |
2 | 225 | 186 | 5 | 227 | 184 |
3 | 252 | 227 | 6 | 215 | 163 |
1 | 2 | 3 | 4 | 5 | 6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Path | CD | Th | Te | CD | Th | Te | CD | Th | Te | CD | Th | Te | CD | Th | Te | CD | Th | Te |
P1 | 19.6 | 1.1 | -4.9 | 5.8 | -26.0 | -3.0 | 6.6 | -12.9 | -1.4 | 13.0 | 38.9 | -44.7 | 8.1 | -0.3 | -1.2 | 9.1 | 0.0 | 1.8 |
P2 | 18.2 | -0.7 | -2.9 | 14.7 | -3.0 | 10.7 | 19.4 | 0.7 | -4.2 | 10.3 | -26.2 | -40.4 | 8.9 | -13.9 | -7.5 | 10.9 | 1.3 | 4.4 |
P3 | 19.4 | -0.1 | 2.7 | 14.8 | -3.9 | 11.6 | 17.8 | 0.5 | 1.4 | 22.2 | -2.4 | 2.6 | 14.8 | -2.8 | -0.6 | 9.7 | -3.2 | -1.7 |
P4 | 5.9 | 65.6 | 1.1 | 6.5 | 68.9 | 6.5 | 7.0 | 30.2 | -3.5 | 12.8 | -3.4 | -5.2 | 8.9 | -0.1 | 1.8 | 13.7 | -2.4 | 0.8 |
P5 | 4.7 | 52.0 | -55.9 | 4.9 | 46.0 | 60.6 | 3.9 | -12.1 | -98.2 | 6.1 | 41.8 | 11.5 | 3.9 | -80.9 | -0.6 | 6.0 | -55.5 | 76.1 |
P6 | 5.1 | -10.5 | 19.8 | 20.8 | 0.3 | 0.4 | 12.9 | -5.3 | -6.3 | |||||||||
P7 | 21.5 | 0.9 | -1.7 | |||||||||||||||
μh | 0.28 | 0.37 | 0.06 | 0.31 | 0.24 | 0.32 | ||||||||||||
μe | 0.49 | 0.34 | 0.36 | 0.85 | 0.02 | 1.15 | ||||||||||||
μexp | 0.38—0.42(p)[ | 0.08—0.20(p)[ | 0.10(n)[ | 0.11(n)[ |
Table 2 Calculated transfer integrals in TTF derivatives(Th and Te in meV) with different hopping pathway, centriod-centriod distance(CD in nm) and calculated hole and electron mobilities(μh and μe in cm2·V-1·s-1)
1 | 2 | 3 | 4 | 5 | 6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Path | CD | Th | Te | CD | Th | Te | CD | Th | Te | CD | Th | Te | CD | Th | Te | CD | Th | Te |
P1 | 19.6 | 1.1 | -4.9 | 5.8 | -26.0 | -3.0 | 6.6 | -12.9 | -1.4 | 13.0 | 38.9 | -44.7 | 8.1 | -0.3 | -1.2 | 9.1 | 0.0 | 1.8 |
P2 | 18.2 | -0.7 | -2.9 | 14.7 | -3.0 | 10.7 | 19.4 | 0.7 | -4.2 | 10.3 | -26.2 | -40.4 | 8.9 | -13.9 | -7.5 | 10.9 | 1.3 | 4.4 |
P3 | 19.4 | -0.1 | 2.7 | 14.8 | -3.9 | 11.6 | 17.8 | 0.5 | 1.4 | 22.2 | -2.4 | 2.6 | 14.8 | -2.8 | -0.6 | 9.7 | -3.2 | -1.7 |
P4 | 5.9 | 65.6 | 1.1 | 6.5 | 68.9 | 6.5 | 7.0 | 30.2 | -3.5 | 12.8 | -3.4 | -5.2 | 8.9 | -0.1 | 1.8 | 13.7 | -2.4 | 0.8 |
P5 | 4.7 | 52.0 | -55.9 | 4.9 | 46.0 | 60.6 | 3.9 | -12.1 | -98.2 | 6.1 | 41.8 | 11.5 | 3.9 | -80.9 | -0.6 | 6.0 | -55.5 | 76.1 |
P6 | 5.1 | -10.5 | 19.8 | 20.8 | 0.3 | 0.4 | 12.9 | -5.3 | -6.3 | |||||||||
P7 | 21.5 | 0.9 | -1.7 | |||||||||||||||
μh | 0.28 | 0.37 | 0.06 | 0.31 | 0.24 | 0.32 | ||||||||||||
μe | 0.49 | 0.34 | 0.36 | 0.85 | 0.02 | 1.15 | ||||||||||||
μexp | 0.38—0.42(p)[ | 0.08—0.20(p)[ | 0.10(n)[ | 0.11(n)[ |
Fig.6 Band structures of molecules 1—6(A—F) The energies are all plotted along directions in the first Brillouin zone connecting the point: G(0, 0, 0), R(0.5, 0.5, 0.5), Z(0, 0, 0.5), X(0.5, 0, 0), T(0, 0.5, 0.5), U(0.5, 0, 0.5), Y(0, 0.5, 0), Z(0, 0, 0.5), V(0.5, 0.5, 0), Y(0, 0.5, 0), R(0.5, 0.5, 0.5), X(0.5, 0, 0), U(0.5, 0, 0.5), R(0.5, 0.5, 0.5), for compounds 1—4 and 6. Z(0, 0, 0), G(0.5, 0, 0), Y(0, 0.5, 0), A(0, 0, 0.5), B(0, 0.5, 0.5), D(0, 0.5, 0.5), E(0, 0.5, 0.5), C(0, 0.5, 0.5), for compound 5. The fermi energy is set to 0. The energy gap and the dispertion of conduction and valence band are also marked.
[1] | Horowitz G., Fichou D., Peng X., Xu Z., Garnier F., Solid State. Communications, 1989, 72(4), 381—384 |
[2] | Facchetti A., Mushrush M., Yoon M. H., Hutchison G. R., Ratner M. A., Marks T. J., J. Am. Chem. Soc., 2004, 126(42), 13859—13874 |
[3] | Torrent M., Hadley M. P., Crivillers N., Veciana J., Rovira C., Chem. Phys. Chem., 2006, 7(1), 86—88 |
[4] | Jiang H., Yang X., Wang E., Fu Y., Liu Y., Li H., Cui Z., Liu Y., Hu W., Synthetic Metals, 2011, 161(1/2), 136—142 |
[5] | Ruiz R., Papadimitratos A., Mayer A. C., Malliaras G. G., Advanced Materials, 2005, 17(14), 1795—1798 |
[6] | Yoon M. H., Facchetti A., Stern C. E., Marks T. J., J. Am. Chem. Soc., 2006, 128(17), 5792—5801 |
[7] | Marks T. J., Accounts of Chemical Research, 2011, 44(7), 501—510 |
[8] | Singh T. B., Erten S., Günes S., Zafer C., Turkmen G., Kuban B., Teoman Y., Sariciftci N., Icli S., Org. Electron., 2006, 7(6), 480—489 |
[9] | Leufgen M., Rost O., Gould C., Schmidt G., Geurts J., Molenkamp L. W., Oxtoby N. S., Mas-Torrent M., Crivillers N., Veciana J., Rovira C., Org. Electron., 2008, 9, 1101—1106 |
[10] | Ando S., Murakami R., Nishida J. I., Tada H., Inoue Y., Tokito S., Yamashita Y., J. Am. Chem. Soc., 2005, 127(43), 14996—14997 |
[11] | Guøgano X., Kanibolotsky A. L., Blum C., Mertens S. F. L., Liu S. X., Neels A., Hagemann H., Skabara P. J., Leutwyler S., Wandlowski T., Hauser A., Decurtins S., Chemistry: A European Journal, 2009, 15(1), 63—66 |
[12] | Li H. X., Zheng R. H., Shi Q., Phys. Chem. Chem. Phys., 2011, 13, 5642—5650 |
[13] | Geng Y., Wu S. X., Li H. B., Tang X. D., Wu Y., Su Z. M., Liao Y., Journal of Materials Chemistry, 2011, 21(39), 15558—15566 |
[14] | Jortner J., Ben-Reuven A., Chemical Physics Letters, 1976, 41(3), 401—406 |
[15] | Brunschwig B. S., Logan J., Newton M. D., Sutin N., J. Am. Chem. Soc., 1980, 102(18), 5798—5809 |
[16] | Siders P., Marcus R., J. Am. Chem. Soc., 1981, 103(4), 748—752 |
[17] | Newton M. D., Sutin N., Annual Review of Physical Chemistry, 1984, 35(1), 437—480 |
[18] | Norton J. E., Brédas J. L., J. Am. Chem. Soc., 2008, 130(37), 12377—12384 |
[19] | Tang X. D., Geng Y., Liao Y., Su Z. M., Chem. J. Chinese Universities, 2010, 31(4), 766—771 |
(汤肖丹, 耿允, 廖奕, 苏忠民. 高等学校化学学报, 2010, 31(4), 766—771) | |
[20] | Te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., van Gisbergen S. J., Snijders J. G., Ziegler T., Journal of Computational Chemistry, 2001, 22(9), 931—967 |
[21] | Valeev E. F., Coropceanu V., da Silva Filho D. A., Salman S., Brédas J. L., J. Am. Chem. Soc., 2006, 128(30), 9882—9886 |
[22] | Schein L., McGhie A., Physical Review B, 1979, 20, 1631—1639 |
[23] | Becke A. D., Physical Review A, 1988, 38(6), 3098 |
[24] | Frisch M.J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D.01, Gaussian Inc.,Wallingford CT, 2009 |
[25] | Scott A. P., Radom L., Journal of Physical Chemistry, 1996, 100(41), 16502—16513 |
[26] | Kresse G., Furthmüller J., Computational Materials Science, 1996, 6(1), 15—50 |
[27] | Kresse G., Hafner J., Physical Review B, 1994, 49(20), 14251 |
[28] | Perdew J., Phys. Rev. Lett., 1996, 77, 3865—3868 |
[29] | Tang X. D., Liao Y., Geng H., Shuai Z. G., Journal of Materials Chemistry, 2012, 22(35), 18181—18191 |
[30] | Lv A., Puniredd S. R., Zhang J., Li Z., Zhu H., Jiang W., Dong H., He Y., Jiang L., Li Y., Pisula W., Meng Q., Hu W., Wang Z., Advanced Materials, 2012, 24(19), 2626—2630 |
[31] | Wang C. L., Dong H. L., Hu W. P., Chemical Reviews, 2011, 112(4), 2208—2267 |
[32] | Naraso Nishida J. I., Kumaki D., Tokito S., Yamashita Y., J. Am. Chem. Soc., 2006, 128(43), 9598—9599 |
[33] | Koh S. E., Delley B., Medvedeva J. E., Facchetti A., Freeman A. J., Marks T. J., Ratner M. A., Journal of Physical Chemistry B, 2006, 110(48), 24361—24370 |
(Ed.: Y, Z) |
[1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
[4] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[5] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[6] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[7] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
[8] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[9] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[10] | ZHENG Ruoxin, ZHANG Igor Ying, XU Xin. Development and Benchmark of Lower Scaling Doubly Hybrid Density Functional XYG3 [J]. Chem. J. Chinese Universities, 2021, 42(7): 2210. |
[11] | YING Fuming, JI Chenru, SU Peifeng, WU Wei. λ-DFCAS: A Hybrid Density Functional Complete Active Space Self Consistent Field Method [J]. Chem. J. Chinese Universities, 2021, 42(7): 2218. |
[12] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
[13] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[14] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
[15] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||