高等学校化学学报

• 综合评述 • 上一篇    下一篇

高分子流体剪切带的研究进展与挑战

卢宇源1,安立佳2   

  1. 1. 清华大学化学工程系 2. 中国科学院长春应用化学研究所,高分子科学与技术全国重点实验室

  • 收稿日期:2025-11-24 修回日期:2025-12-15 出版日期:2025-12-16 发布日期:2025-12-16
  • 通讯作者: 卢宇源
  • 基金资助:
    国家自然科学基金(批准号:22341304)和国家重点研发计划项目(批准号:2023YFA1008800,2020YFA0713601)资助

Progress and Challenges in Shear Banding of Polymer Fluids

LU Yuyuan1, AN Lijia2   

  1. 1.Department of Chemical Engineering, Tsinghua University 2.State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
  • Received:2025-11-24 Revised:2025-12-15 Online:2025-12-16 Published:2025-12-16
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.22341304) and the National Key R&D Program of China(Nos.2023YFA1008800, 2020YFA0713601)

摘要: 高分子流体剪切带是强剪切流场下典型的应变局域化现象,其物理本质与调控机制是高分子流变学领域的核心科学问题。本文综述了该现象的研究进展,重点讨论其本征性、形成机理、动态演化及稳定性。大尺度分子动力学模拟证实,剪切带是高分子流体在特定剪切条件下的本征行为,常伴随稳态剪切应力平台。最新研究揭示,剪切带的空间位置由初始缠结网络的结构异质性决定,平衡态下的局部缠结薄弱区(如多重缠结稀疏区)是剪切应变集中的“种子”。双分散体系研究进一步表明,链长依赖性迁移与选择性富集形成的“快带软化?慢带硬化”动态耦合机制是剪切带稳定的关键。本文总结了关于剪切带研究的主要争议与挑战,展望了未来研究方向,强调通过发展高时空分辨原位表征技术、深化多尺度模拟与理论,实现剪切带的有效预测与调控,将为指导高分子材料的精密成型(如注塑、挤出过程中的流变均匀性控制,以及超薄膜、超细纤维等先进制品的可控制备)提供关键理论支撑,从而显著提升加工效率与产品性能。

关键词: 剪切带, 非线性流变学, 缠结, 应变局域化, 分子动力学

Abstract: Shear banding in polymer fluids represents a paradigmatic example of strain localization under strong nonlinear shear flow, with its physical origin and regulatory mechanisms standing as central scientific questions in polymer rheology. This review synthesizes recent advances in understanding shear banding, focusing on its intrinsic nature, formation mechanisms, dynamic evolution, and stability. Large-scale molecular dynamics simulations have firmly established shear banding as an intrinsic bulk phenomenon under specific shear conditions, often accompanied by a stress plateau in the steady-state shear stress?shear rate curve. Emerging studies reveal that the spatial localization of shear bands is determined by the initial structural heterogeneity of the entanglement network, where pre-existing "weak spots" in the equilibrium state, such as regions with sparse multiple entanglements, act as nucleation sites for shear stain concentration. Investigations on bidisperse systems further demonstrate that chain-length-dependent migration and selective enrichment drive a "fast-band softening?slow-band hardening" coupling mechanism, which is critical for the long-term stability of shear bands. This paper summarizes the key controversies, challenges, and future research directions in shear band studies. It emphasizes that achieving effective prediction and regulation of shear bands, through the development of high spatiotemporal resolution in-situ characterization techniques and the advancement of multi-scale simulations and theories, will provide critical theoretical support for guiding the precision forming of polymeric materials. This includes controlling rheological uniformity in processes such as injection molding and extrusion, as well as enabling the controlled fabrication of advanced products like ultra-thin films and ultra-fine fibers, thereby significantly enhancing processing efficiency and product performance.

Key words: Shear banding, Nonlinear rheology, Entanglement, Strain localization, Molecular dynamics

中图分类号: 

TrendMD: