高等学校化学学报

• 研究论文 • 上一篇    下一篇

氮掺杂多孔碳化钼纳米棒的制备及其在酸性和碱性析氢性能的研究

王乙童1, 曹圆圆1, 周丽娜3, 叶荣榕1, 李娣1, 刘芯辛1, 郭彪1, 周丽景1*, 赵震1,2*   

  1. 1. 沈阳师范大学化学化工学院 2. 中国石油大学(北京) 重质油国家重点实验室 3. 中核工程咨询有限公司
  • 收稿日期:2025-04-02 修回日期:2025-05-26 网络首发:2025-05-28 发布日期:2025-05-28
  • 通讯作者: 周丽景 E-mail:zlj9333@163.com
  • 基金资助:
    国家自然科学基金(批准号: 22102108, 22202135)、辽宁省属本科高校基本科研业务费专项(批准号: LJ212410166075, LJ212410166025)和辽宁省教育厅科学研究经费(批准号: LQN202004)资助

Synthesis of Nitrogen-Doped Porous Molybdenum Carbide Nanorods and Their Electrocatalytic Hydrogen Evolution Performance in Acidic and Alkaline Media

WANG Yitong1†, CAO Yuanyuan1†, ZHOU Lina3, YE Rongrong1, LI Di1, LIU Xinxin1, GUO Biao1, ZHOU Lijing1*, ZHAO Zhen1,2*   

  1. 1. Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University

    2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum 3. China Nuclear Engineering Consulting Co

  • Received:2025-04-02 Revised:2025-05-26 Online First:2025-05-28 Published:2025-05-28
  • Contact: Li-Jing Zhou E-mail:zlj9333@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China (Nos. 22102108, 22202135); the Fundamental Research Funds for the Liaoning Universities, China (Nos. LJ212410166075, LJ212410166025) and the Youth Foundation of the Education Department of Liaoning Province , China(No. LQN202004)

摘要: 电解水制氢技术凭借其资源可再生性、产物零碳排放及高纯度氢气产出等优势, 被视为实现绿氢规模化生产的理想途径. 作为电解水反应的核心半反应, 析氢反应(HER)的动力学迟缓特性制约了其能量转换效率. 因此, 开发兼具高活性与稳定性的析氢电催化剂是推动该技术实用化的关键挑战. 本文通过调控碳化温度与葡萄糖含量等关键合成参数, 成功制备出具有多孔结构的氮掺杂碳化钼纳米棒催化剂. 采用XRD、XPS、N2物理吸附-脱附、Raman、SEM和TEM等系统表征手段, 揭示了其物相组成、化学态分布及微观形貌特征. 电化学测试表明: 在0.5 M H2SO4与1 M KOH中, 该催化剂达到10 mA/cm2电流密度时过电势仅为161 mV和118 mV;在酸性条件下可于10 mA/cm2恒电流密度下连续稳定运行200小时, 而碱性条件下同样电流密度的稳定性测试时长可达120小时.

Abstract: Water electrolysis for hydrogen production has been recognized as an ideal pathway toward scalable green hydrogen manufacturing, owing to its renewable feedstock utilization, zero carbon emission byproducts, and high-purity hydrogen output. As the pivotal half-reaction in water splitting, the hydrogen evolution reaction (HER)suffers from sluggish kinetics that fundamentally limits energy conversion efficiency. Consequently, developing HER electrocatalysts with combined high activity and operational stability remains a critical challenge for practical implementation. In this work, we successfully synthesized nitrogen-doped molybdenum carbide nanorods with hierarchical porous structures by precisely regulating key synthesis parameters, including carbonization temperature and glucose content. Systematic characterizations via XRD, XPS, N2 physisorption-desorption analysis, Raman spectroscopy, SEM, and TEM were conducted to elucidate their phase composition, chemical state distribution, and morphological features. Electrochemical evaluations demonstrated that the optimized catalyst requires low overpotentials of merely 161 mV and 118 mV to achieve a current density of 10 mA/cm2 in 0.5 M H2SO4 and 1 M KOH, respectively. Remarkably, it exhibited exceptional operational stability, sustaining continuous HER operation for 200 hours at 10 mA/cm2 in acidic media and 120 hours under identical current density in alkaline condition.

Key words: Molybdenum carbide, Nanorods, Water splitting, Hydrogen evolution reaction

中图分类号: 

TrendMD: