高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (1): 248.doi: 10.7503/cjcu20200407
所属专题: 分子筛功能材料 2021年,42卷,第1期
收稿日期:
2020-06-30
出版日期:
2021-01-10
发布日期:
2021-01-12
通讯作者:
彭媛
E-mail:pengyuan@dicp.ac.cn;yangws@dicp.ac.cn
作者简介:
杨维慎, 男, 博士, 研究员, 主要从事功能纳米材料合理设计与分子工程及其在催化、 分离方面应用研究. E-mail: 基金资助:
SONG Hongling1,2, PENG Yuan1,2(), YANG Weishen1,2(
)
Received:
2020-06-30
Online:
2021-01-10
Published:
2021-01-12
Contact:
PENG Yuan
E-mail:pengyuan@dicp.ac.cn;yangws@dicp.ac.cn
Supported by:
摘要:
膜法气体分离作为一类低能耗先进分离技术, 在化工分离中具有广阔的应用前景. 然而商业气体分离膜在实际应用过程中存在选择性和渗透性此消彼长的问题. 以二维纳米片材料为膜构筑基元, 有望突破这一瓶颈. 最具代表性的二维纳米片膜材料当属石墨烯及其衍生物、 二维沸石分子筛、 层状双金属氢氧化物、 二维过渡金属硫化物、 Mxene、 二维共价有机骨架和金属有机骨架材料. 本文对这些二维材料在超薄气体分离膜领域的成果与进展进行介绍, 展现了各类材料在实际分离应用过程中的优势及弊端, 探讨了二维纳米片膜材料在气体分离领域的挑战与发展前景.
中图分类号:
TrendMD:
宋红玲, 彭媛, 杨维慎. 二维纳米片用于快速高效膜法气体分离. 高等学校化学学报, 2021, 42(1): 248.
SONG Hongling, PENG Yuan, YANG Weishen. Two-dimensional Nanosheets for Ultra-permeable Membrane-Based Gas Separation with High Efficiency. Chem. J. Chinese Universities, 2021, 42(1): 248.
Fig.1 Robeson’s upper bound curves for typical commercial gas separations[14](A) and schematic representation of the relationship between permeability and selectivity, the position of commercially interes?ting area varies depending on the separation systems[15](B)(A) Copyright 2014, American Chemical Society; (B) Copyright 2017, Wiley‐VCH.
Fig.2 Illustration of two?dimensional nanosheet membranes with different stacking patternsParallel stacking of porous nanosheets(A) and non-porous nanosheets(B) and vertically aligned stacking of nanosheets(C). Taking H2/CO2 separation for instance, blue and gray lines represent different molecule permeations along different pathways, and their thickness represents permeance magnitude. α and P represent membrane selectivity and gas permeance, respectively, red: excellent, pink: good, blue: moderate.
Fig.4 Illustration of the synthetic process of porous graphene using ion bombardment followed by chemical oxidation[78]Copyright 2014, American Chemical Society.
Fig.6 Photograph of an AAO supported GO membrane(A); scanning electron micrographs of top view of the GO membrane(B); top view of the bare AAO substrate(C) and cross?section view of the GO membrane(D); single gas permeation test through a 18 nm?thick GO membrane(E); separation performances of 1.8 nm?thick(red square), 9 nm?thick(red circle) and 18 nm?thick(red triangle) GO membranes(F)[87]Blue dots represent microporous inorganic membranes from literatures. Copyright 2013, American Association for the Advancement of Science.
Fig.7 Zeolite frameworks approved by the IZA Structure Commission and their known layered forms with proposed nomenclature(yellow boxes designate materials obtained by direct synthesis)[95]Copyright 2012, Royal Society of Chemistry.
Fig.8 TEM images of the b?oriented exfoliated MFI nanosheets(A, B), MFI nanosheet structure viewed along the b axis(C)[98](A)—(C) Copyright 2011, American Association for the Advancement of Science. SEM images of Top view(D) and cross-section view(E) of MFI membrane synthesized by secondary growth of MFI nanosheet seeds, XRD pattern of the obtained MFI membrane(F) and p-xylene permeance and p?/o?xylene selectivity of MFI membrane(G)[102]. (D)—(G) Copyright 2018, Wiley-VCH.
Fig.9 Possible association of metallic cations for the LDHs(A)[106](A) Copyright 2012, Wiley‐VCH; (B) the idealized structure of carbonate-intercalated LDHs with different M2+/M3+ molar ratios[110]. Copyright 2014, the Royal Society of Chemistry.
Fig.10 Crystal structure of layered MoS2(A), atomic position in the 2H phase with trigonal prismatic coordination and in the 1T phase with octahedral coordination(B)[124]Copyright 2017, the American Chemical Society.
Fig.11 Illustration of Ti3AlC2 exfoliation process(left: Ti3AlC2; middle: after being treated with HF; right: Ti3C2T2 nanosheet after sonication treatment)(A); SEM image of layered Ti3C2T2 after HF treatment (B)[130]; AFM image of MXene nanosheet, the height profile corresponds to the blue dashed line(scale bar: 500 nm)(C); SEM image of top view of the MXene membrane(scale bar: 500 nm)(D); illustra- tion of the interlayer gap between the adjacent MXene nanosheets within membrane(E); single gas permeation tests of MXene membranes with different thicknesses(F); long?term gas separation test of a MXene membrane at room temperature and 1 bar(G)[134]; illustration of the structure and gas permeation of MXene membranes before and after borate and amine modification(H) and long?term gas permeation test of a MXene membrane after borate and amine modification(I)[136](A, B) Copyright 2015, Wiley-VCH; (C)—(G) Copyright 2018, Springer?Nature; (H, I) Copyright 2018, Wiley-VCH.
Fig.12 Main building blocks for two?dimensional COFs, and strategies for 2D polymerization(A—E), the representative molecular structures of the building blocks shown in(A—E)(F)[147]Copyright 2015, the Royal Society of Chemistry.
Fig.13 CTF?1 single?layer structure view along the z direction(A); illustration of the variation of the gas pathways through CTF?1 membranes with perfectly(left) and imperfectly(right) overlapped layers(B); structure of the five CTF?1 membranes composed of two nanosheets, the shadow region represents the impermeable area and the white region represent the newly generated narrow interlayer passages(C); the CO2/N2 separation performance of the 5 membranes compared with the single? layered one(D)[150]Copyright 2016, the Royal Society of Chemistry.
Fig.14 Schematic illustration of a metal ion/cluster, organic ligand molecules with 3?, 4?, and 6?fold symmetry(A); metal ions/clusters with 3? and 4?fold coordination symmetry and a linear ligand(B)[199]; some representative two?dimensional MOFs reported to date viewed along the shortest particle dimension(C)(A, B) Copyright 2017, the Royal Society of Chemistry; (C) Cu(μ-pym2S2)(μ-Cl)[202], Copyright 2013, Wiley‐VCH; Ni(Im)2[203]. ZIF-L[204], Copyright 2013, the Royal Society of Chemistry; NAFS-2[205], Copyright 2011, the American Chemical Society.
Fig.15 SEM images of a bare alumina substrate(A); top view(B) and cross?section view of a Zn2(bim)4 MSN membrane(C); H2/CO2 separation performances of 15 MSN membranes(D) and long?term stability test of a Zn2(bim)4 MSN membrane(E)[207]Copyright 2014, the American Association for the Advancenment Science.
Fig.16 Illustration of the surfactant?assisted synthetic process of NH2?MIL?53(Al) nanolamellae(A); TEM image of the NH2?MIL?53(Al) nanolamellae(B); XRD patterns of NH2?MIL?53(Al) nanolamelllae and the corresponding simulated narrow and large pore forms(C); CO2/CH4 separation performan?ces of NH2?MIL?53(Al)?based mixed?matrix membranes(MMMs) with 8%(mass fraction) loading at 308 K and a transmembrane pressure difference of 3 bar(D); CO2/CH4 separation performances measured at 308 K and a transmembrane pressure difference of 3 bar for MMMs containing NH2?MIL?53(Al) nanolamellae at different loadings(E)[210]Copyright 2018, Wiley‐VCH.
1 | Marchetti P., Solomon M. F. J., Szekely G., Livingston A. G., Chem. Rev., 2014, 114, 10735—10806 |
2 | Humphrey J. L., Keller G. E., Separation Process Technology, McGraw⁃Hill, New York, 1997 |
3 | Zhu C. L., Membrane Science and Technology, Higher Education Press, Beijing, 2004(朱长乐, 膜科学技术, 北京: 高等教育出版社, 2004) |
4 | Po Li N. N., Calo J. M., Eds., Gas Separations Using Composite Hollow Fiber Membranes. In Recent Developments in Separation Science, CRC Press, Boca Raton, FL, 1986 |
5 | Uematsu I., Abe A., Vogl O., Polymer News, 1982, 8, 89—90 |
6 | Henis J. M. S.; Eds.: Paul D. R., Yampolskii Y. P., Commercial and Practical Aspects of Gas Separation Membranes. In Polymeric Gas Separation Membranes, CRC Press, Raton Boca, FL, 1994 |
7 | Baker R.W., Lokhandwala K., Ind. Eng. Chem. Res., 2008, 47, 2109—2121 |
8 | Baker R.W., Ind. Eng. Chem. Res., 2002, 41, 1393—1411 |
9 | Goh P. S., Ismail A. F., Sanip S. M., Ng B. C., Aziz M., Sep. Purif. Technol., 2011, 81, 243—264 |
10 | Bernardo P., Drioli E., Golemme G., Ind. Eng. Chem. Res., 2009, 48, 4638—4663 |
11 | Kosinov N., Gascon J., Kapteijn F., Hensen E. J. M., J. Membr. Sci., 2016, 499, 65—79 |
12 | Robeson L. M., J. Membr. Sci., 1991, 62, 165—185 |
13 | Robeson L. M., J. Membr. Sci., 2008, 320, 390—400 |
14 | Baker R.W., Low B. T., Macromolecules, 2014, 47, 6999—7013 |
15 | Dechinik J., Gascon J., Doonan C. J., Janiak C., Sumby C. J., Angew. Chem. Int. Ed., 2017, 56, 9292—9310 |
16 | Lee J. Y., Wood C. D., Bradshaw D., Rosseinsky M. J., Cooper A. I., Chem. Commun., 2006, (25), 2670—2672 |
17 | Xu S. J., Lu Y. L., Tan B. E., Macromol. Rapid. Commun., 2013, 34, 471—484 |
18 | Hedin C., Xu N., Mater. Today, 2014, 14, 397—403 |
19 | Rao K. V., Mohapatra S., Kulkarni C., Maji T. K., George S. J., Mater. J. Chem., 2011, 21, 12958—12963 |
20 | Martin C. F., Stöckel E., Clowes R., Adams D. J., Cooper A. I., Pis J. J., Rubiera F., Pevida C., Mater J. Chem., 2011, 21, 5475—5483 |
21 | Farha O. K., Spokoyny A. M., Hauser B. G., Bae Y. A., Brown S. E., Snurr R. Q., Mirkin C. A., Hupp J. T., Chem. Mater., 2009, 21, 3033—3035 |
22 | Manoranjan N., Won D. H., Kim J., Woo S. I., J. CO2 Util., 2016, 16, 486—491 |
23 | Vilela F., Zhang K., Antonietti M., Energy Environ. Sci., 2012, 5, 7819—7832 |
24 | Cooper A. I., Adv. Mater., 2009, 21, 1291—1295 |
25 | Dawson R., Cooper A. I., Adams D. J., Prog. Polym. Sci., 2012, 37, 530—563 |
26 | Chen L., Honsho Y., Seki S., Jiang D. L., J. Am. Chem. Soc., 2010, 132, 6742—6748 |
27 | Jiang J. X., Su F. B., Trewin A., Wood C. D., Campbell N. L., Niu H. J., Dickinson C., Ganin A. Y., Rosseinsky M. J., Khimyak Y. Z., Angew. Chem. Int. Ed., 2007, 46, 8574—8578 |
28 | Jiang J. X., Su F., Trewin A., Wood C. D., Niu H. J., Jones J. T. A., Khimyak Y. Z., Cooper A. I., J. Am. Chem. Soc., 2008, 130, 7710—7720 |
29 | Dawson R., Laybourn A., Clowes R., Khimyak Y. Z., Adams D. J., Cooper A. I., Macromolecules, 2009, 42, 8809—8816 |
30 | Dawson R., Stöckel E., Holst J. R., Adams D. J., Cooper A. I., Energy Environ. Sci., 2011, 4, 4239—4245 |
31 | Xiang Z., Cao D., J. Mater. Chem. A, 2013, 1, 2691—2718 |
32 | Feng X., Ding X., Jian D., Chem. Soc. Rev., 2012, 41, 6010—6022 |
33 | Furukawa H., Yaghi O. M., J. Am. Chem. Soc., 2009, 131, 8875—8883 |
34 | El⁃Kaderi H. M., Hunt J. R., Mendoza⁃Cortés J. L., Côté A. P., Taylor R. E., O’Keeffe M., Yaghi O. M., Science, 2007, 316, 268—272 |
35 | Díaz U., Corma A., Chem. Rev., 2016, 311, 85—124 |
36 | Ramimoghadam D., MacA Gray E., WebbC. J., Int. J. Hydrogen Energ., 2016, 41, 16944—16965 |
37 | Du N. Y., Park H. B., Dal-Cin M. M., Guiver M. D., Energy Environ. Sci., 2012, 5, 7306—7322 |
38 | Weidman J. R., Guo R. L., Ind. Eng. Chem. Res., 2017, 56, 4220—4236 |
39 | Jue M., Lively R. P., React. Funct. Polym., 2015, 85, 88—110 |
40 | Yampolskii Y., Pinnau I., Freeman B., Materials Science of Membranes for Gas and Vapor Separation, John Wiley & Sons Ltd., England, 2006 |
41 | Pera⁃Titus M., Chem. Rev., 2014, 114, 1413—1492 |
42 | Merkel T. C., Lin H. Q., Wei X. T., Baker R., J. Membr. Sci., 2010, 359, 126—139 |
43 | Thornton A. W., Dubbeldam D., Liu M. S., Ladewig B. P., Hill A. J., Hill M. R., Energy Environ. Sci., 2012, 5, 7637—7646 |
44 | Ku A. Y., Kulkarni P., Shisler R., Wei W., J. Membr. Sci., 2011, 367, 233—239 |
45 | Koenig S. P., Wang L., Pellegrino J., Bunch J. S., Nature Nanotech., 2012, 7, 728—732 |
46 | Agrawal K. V., Dispersible Exfoliated Zeolite Nanosheets and Their Application in High Performance Zeolite Membrane, University of Minnesota, Minnesota, USA, 2013 |
47 | Kim W. G., Nair S., Chem. Eng. Sci., 2013, 104, 908—924 |
48 | Koros W. J., Mahajan R., J. Membr. Sci., 2000, 175, 181—196 |
49 | Singh A., Koros W. J., Ind. Eng. Chem. Res., 1996, 35, 1231—1234 |
50 | Crystal Structures of Clay Minerals and Their X⁃ray Identification, Eds.: Brindley G. W., Brown G., Mineralogical Society, London, 1980 |
51 | Nadeau P. H., Tait J. M., McHardy W. J., Wilson M. J., Clay Miner., 1984, 19, 67—76 |
52 | Nadeau P. H., Wilson M. J., McHardy W. J., Clay Miner., 1984, 19, 757—769 |
53 | Tamura K., Sasaki T., Yamada H., Nakazawa H., Langmuir, 1999, 15, 5509—5512 |
54 | Zulhairun A. K., Ismail A. K., Matsuura T., Abdullah M. S., Mustafa A., Chem. Eng. J., 2014, 241, 495—503 |
55 | Takada K., Sakurai H., Takayama-Muromachi E., Izumi F., Dilanian R. A., Sasaki T., Nature, 2003, 422, 53—55 |
56 | Treacy M. M. J., Rice S. B., Jacobson A. J., Lewandowski J. T., Chem. Mater., 1990, 2, 279—286 |
57 | Sasaki T., Watanabe M., Hashizume H., Yamada H., Nakazawa H., J. Am. Chem. Soc., 1996, 118, 8329—8335 |
58 | Ebina Y., Sasaki T., Watanabe M., Solid State Ionics, 2002, 151, 177—182 |
59 | Schaak R. E., Mallouk T. E., Chem. Mater., 2000, 12, 3427—3434 |
60 | Sasaki T., Watanabe M., J. Am. Chem. Soc., 1998, 120, 4682—4689 |
61 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666—669 |
62 | Geim A. K., Novoselov K. S., Nature Mater., 2007, 6, 183—191 |
63 | Lee C. G., Wei X. D., Kysar J. W., Hone J., Science, 2008, 321, 385—388 |
64 | Novoselov K. S., Angew. Chem. Int. Ed., 2011, 50, 6986—7002 |
65 | Definitions and Terminologies of Graphene Materials, 2013(石墨烯材料的名词术语和定义, 中国石墨烯产业技术创新战略联盟标准, Q/LM01CGS001⁃2013, 2013) |
66 | Novoselov K. S., Fal’ko V. I., Colombo L., Gellert P. R., Schwab M. G., Kim K., Nature, 2012, 490, 192—200 |
67 | Peigney A., Laurent Ch., Flahaut E., Bacsa R. R., Rousset A., Carbon, 2001, 507—514 |
68 | Liu F., Ming P. B., Li J., Phys. Rev. B, 2007, 76, 064120 |
69 | Elias D. C., Nair R. R., Mohiuddin T. M. G., Morozov S. V., Blake P., Halsall M. P., Ferrari A. C., Boukhvalov D. W., Katsnelson M. I., Geim A. K., Novoselov K. S., Science, 2009, 323, 610—613 |
70 | Loh K. P., Bao Q. L., Ang P. K., Yang J. X., J. Mater. Chem., 2010, 20, 2277—2289 |
71 | Bekyarova E. M., Itkis E., Ramesh P., Berger C., Sprinkle M., de HeerW. A., Haddon R. C., J. Am. Chem. Soc., 2009, 131, 1336—1337 |
72 | Nair R. R., Ren W. C., Jalil R., Riaz I., Kravets V. G., Britnell L., Blake P., Schedin F., Mayorov A. S., Yuan S. J., Katsnelson M. I., Cheng H. M., Strupinski W., Bulusheva L. G., Okotrub A. V., Grigorieva I. V., Grigorenko A. N., Novoselov K. S., Geim A. K., Small, 2010, 6, 2877—2884 |
73 | Selavagione H. J., Martínez G., Ellis G., Macromol. Rapid Comm., 2011, 32, 1771—1789 |
74 | Bunch J. S., Verbridge S. S., Alden J. S., van der Zande A. M., Parpia J. M., Craighead H. G., McEuen P. L., Nano Lett., 2008, 8, 2458—2462 |
75 | Jiang D. E., Cooper V. R., Dai S., Nano Lett., 2009, 9, 4019—4024 |
76 | Kim H. W., Yoon H. W., Yoon S. M., Yoo B. M., Ahn B. K., Cho Y. H., Shin H. J., Yang H., Paik U., Kwon S., Choi J. Y., Park H. B., Science, 2013, 342, 91—95 |
77 | Celebi K., Buchheim J., Wyss R. M., Droudian A., Gasser P., Shorubalko I., Kye J., Lee C., Park H. G., Science, 2014, 344, 289—292 |
78 | O’Hern S. C., Boutilier M. S. H., Idrobo J., Song Y., Kong J, Laoui T., Atieh M., Karnik R., Nano Lett., 2014, 14, 1234—1241 |
79 | Boutilier S. H., Jang D., Idrobo J. C., Kidambi P. R., Hadjiconstantinou N. G., Karnik R., ACS Nano, 2017, 11, 6, 5726—5736 |
80 | Brodie B. C., Phil. Trans. R. Soc., 1859, 149, 249—259 |
81 | Hummers W. S. Jr., Offeman R. E., J. Am. Chem. Soc., 1958, 80, 1339 |
82 | Lerf A., He H., Forster M., Klinowski J., J. Phys. Chem. B, 1998, 102, 23, 4477—4482 |
83 | Casabianca L. B., Shaibat M. A., Cai W. W., Park S., Piner R., Rouff R. S., Ishii Y., J. Am. Chem. Soc., 2010, 132, 5672—5676 |
84 | He H. Y., Klinowski J., Forster M., Lerf A., Chem. Phy. Lett., 1998, 287, 53—56 |
85 | Cote L. J., Kim J., Zhang Z., Sun C., Huang J. X., Soft Matter., 2010, 6, 6096—6101 |
86 | Nair R. R., Wu H. A., Jayaram P. N., Grigorieva I. V., Geim A. K., Science, 2012, 335, 442—444 |
87 | Li H., Song Z. N., Zhang X. J., Huang Y., Li S. G., Mao Y. T., Ploehn H. J., Bao Y., Yu M., Science, 2013, 342, 95—98 |
88 | Gómez⁃Navarro C., Meyer J. C., Sundaram R. S., Chuvilin A., Kurasch S., Burghard M., Kern K., Kaiser U., Nano Lett., 2010, 10, 1144—1148 |
89 | Gómez⁃Navarro C., Weitz R. T., Bittner A. M., Scolari M., Mews A., Burghard M., Kern K., Nano Lett., 2007, 7, 3499—3503 |
90 | Kudin K. N., Ozbas B., Schniepp H. C., Prud’homme R. K., Aksay I. A., Raman R. C., Nano Lett., 2008, 8, 36—41 |
91 | Wang X. R., Chi C. L., Tao J. F., Peng Y. W., Ying S. M., Qian Y. H., Dong J. Q., Hu Z. G., Gu Y. D., Zhao D., Chem. Commun., 2016, 52, 8087—8090 |
92 | Chi C. L., Wang X. R., Peng Y. W., Qian Y. H., Hu Z. G., Dong J. Q., Zhao D., Chem. Mater., 2016, 28, 2921—2927 |
93 | Yang X. Y., Wang X. B., Li J., Yang J., Wan L., Wang J. C., Chem. J. Chinese Universities, 2012, 33(9), 1902—1907(杨旭宇, 王贤保, 李静, 杨佳, 万丽, 王敬超. 高等学校化学学报, 2012, 33(9), 1902—1907) |
94 | Jin X. H., Foller T., Wen X. Y., Ghasemian M. B., Wang F., Zhang M. W., Bustamante H., Sahajwalla V., Kumar P., Kim H., Lee G. H., Kalantar K., Joshi R., Adv. Mater., 2020, 32, 190758 |
95 | Roth W. J., Gil B., Makowski W., Marszalek B., Eliášová P., Chem. Soc. Rev., 2016, 45, 3400—3438 |
96 | Jeong H. K., Nair S., Vogt T., Dickinson L. C., Tspatsis M., Nature Mater., 2003, 2, 53—58 |
97 | Choi S., Coronas J., Jordan E., Oh W., Nair S., Onorato F., Shantz D. F., Tsapatsis M., Angew. Chem. Int. Ed., 2008, 47, 552—555 |
98 | Varoon K., Zhang X. Y., Elyassi B., Brewer D. D., Gettel M., Kumar S., Lee J. A., Maheshwari S., Mittal A., Sung C. Y., Cococcioni M., Francis L. F., McCormick A. V., Mkhoyan K. A., Tsapatsis M., Science, 2011, 334, 72—75 |
99 | Agrawal K. V., Topuz B., Pham T. C. T., Nguyen T. H. , Sauer N., Rangnekar N., Zhang H., Narasimharao K., Basahel S. N.,Francis L. F., Macosko C. W., Al-Thabaiti S., Tsapatsis M., Yoon K. B., Adv. Mater., 2015, 27, 3243—3249 |
100 | Jeon M. Y., Kim D., Kumar P., Lee P. S., Rangnekar N., Bai P., Shete M., Elyassi B., Lee H. S., Narasimharao K., Basahel S. N., Al⁃Thabaiti S., Xu W. Q., Cho H. J., Fetisov E. O., Thyagarajan R., DeJaco R. F., Fan W., Mkhoyan K. A., Siepmann J. I., Tsapatsis M., Nature, 2017, 543, 690—694 |
101 | Zhang X. Y., Liu D. X., Xu D. D., Asahina S., Cychosz K. A., Agrawal K. V., Wahedi Y. A., Bhan A., Hashimi S. A., Terasaki O., Thommes M., Tsapatsis M., Science, 2012, 336, 1684—1687 |
102 | Kim D., Jeon M. Y., Stottrup B. L., Tsapatsis M., Angew. Chem. Int. Ed., 2018, 57, 480—485 |
103 | Min B., Yang S. W., Korde A., Kwon Y. H., Jones C. W., Nair Sankar., Angew. Chem. Int. Ed., 2019, 58 ,8201—8205 |
104 | Huang Y., Wang L., Song Z. N., Li S. G., Yu M., Angew. Chem. Int. Ed., 2015, 54, 10843—10847 |
105 | Wang B., Gao F., Zhang F., Xing W. H., Zhou R. F., J. Mater. Chem. A, 2019, 7, 13164—13172 |
106 | Zhao M. Q., Zhang Q., Zhang J. Q., Wei F., Adv. Funct. Mater., 2012, 22, 675—694 |
107 | Wang Q., O’Hare D., Chem. Rev., 2012, 112, 4124—4155 |
108 | Cavani F., Trifirò F., Vaccari A., Catal. Today, 1991, 11, 173—301 |
109 | Leroux F., Besse J. P., Chem. Mater., 2001, 13, 3507—3515 |
110 | Fan G. L., Li F., Evans D. G., Duan X., Chem. Soc. Rev., 2014, 43, 7040—7066 |
111 | Zhang X., Prepared and Inhibition Property of Layered Double Hydroxides Films on Copper, Qingdao University of Science and Technology, Qingdao, 2011(张昕. 层状双金属氢氧化物薄膜的制备及其对铜表面的缓蚀性能, 青岛: 青岛科技大学, 2011) |
112 | Liu Y., Wang N. Y., Caro J., J. Mater. Chem. A, 2014, 2, 5716—5723 |
113 | Liu Y., Wang N. Y., Cao Z. W., Caro J., J. Mater. Chem. A, 2014, 2, 1235—1238 |
114 | Mao N., Zhou C. H., Tong D. S., Yu W. H., Lin C. X. C., Appl. Clay Sci., 2017, 144, 60—78 |
115 | Yang H. M., Fei H. H., Chem. Commun., 2017, 53(52), 7064—7067 |
116 | Yan Y. X., Liu Q., Wang J., Wei J. B., Gao Z., Mann T., Li Z. S., He Y., Zhang M. L., Liu L. H., J. Colloid Interf. Sci., 2012, 371, 15—19 |
117 | Wang J. W., Stevens L. A., Drage T. C., Wood J., Chem. Eng. Sci., 2012, 68, 424—431 |
118 | Kim T. W., Sahimi M., Tsotsis T. T., Ind. Eng. Chem. Res., 2009, 48, 5794—5801 |
119 | Liu Y. T., Wu H., Min L. F., Song S. Q., Yang L. X., Ren Y. X., Wu Y. Z., Zhao R., Wang H. J., Jiang Z. Y., J. Membr. Sci., 2020, 598, 117663 |
120 | Chhowalla M., Shin H. K., Eda G., Li L. J., Loh K. P., Zhang H., Nature Chem., 2013, 5, 263—275 |
121 | Zhang G., Liu H. J., Qu J. H., Li J. H., Energy Environ. Sci., 2016, 9, 1190—1209 |
122 | Muller G. A., Cook J. B., Kim H. S., Tolbert S. H., Dunn B., Nano Lett., 2015, 15, 1911—1917 |
123 | Radisavljevic B., Kis A., Nature Mater., 2013, 12, 815—820 |
124 | Wang Z. Y., Mi B. X., Environ. Sci. Technol., 2017, 51, 8229—8244 |
125 | Bertolazzi S., Brivio J., Kis A., ACS Nano, 2011, 5, 9703—9709 |
126 | Shen Y. J., Wang H. X., Zhang X., Zhang Y. T., ACS Appl. Mater. Interfaces, 2016, 8, 23371—23378 |
127 | Deng M. M., Kwac K. J., Li M., Jung Y. S., Park H. G., Nano Lett., 2017, 17, 2342—2348 |
128 | Wang D., Wang Z. G., Wang L., Hu L., Jin J., Nanoscale, 2015, 7, 17649—17652 |
129 | Achari A., Sahana S. A., Eswaramoorthy M., Energy Environ. Sci., 2016, 9, 1224—1228 |
130 | Naguib M., Kurtoglu M., Presser V., Lu J., Niu J. J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W., Adv. Mater., 2011, 23, 4248—4253 |
131 | Barsoum M. W., Prog. Solid State Chem., 2000, 28, 201—281 |
132 | Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y., Chem. Mater., 2017, 29, 18, 7633—7644 |
133 | Tan T. L., Jin H. M., Sullivan M. B., Anasori B., Gogotsi Y., ACS Nano, 2017, 11, 4407—4418 |
134 | Ding L., Wei Y. Y., Li L. B., Zhang T., Wang H. H., Xue J., Ding L. X., Wang S. Q., Caro J., Gogotsi Y., Nature Commun., 2018, 9, 155 |
135 | Fan Y. Y., Wei L. Y., Meng X. X., Zhang W. M., Yang N. T., Jin Y., Wang X. B., Zhao M., W., Liu S. M., J. Membr. Sci., 2019, 569, 117—123 |
136 | Shen J., Liu G. Z., Ji Y. F., Liu Q., Cheng L., Guan K. C., Zhang M. C., Liu G. P., Xiong J., Yang J., Jin W. Q., Adv. Funct. Mater., 2018, 28, 1801511 |
137 | Côté A.P., Benin A. I., Ockwig N. W., O’Keeffe M., Matzger A. J., Yaghi O. M., Science, 2005, 310, 1166—1170 |
138 | Diercks C. S., Yaghi O. M., Science, 2017, 355, eaal1585 |
139 | Waller P. J., Gándara F., Yaghi O. M., Acc. Chem. Res., 2015, 48, 3053—3063 |
140 | Rowan S. J., Cantrill S. J., Cousins G. R. L., Sanders J. K. M., Stoddart J. F., Angew. Chem. Int. Ed., 2002, 41, 898—952 |
141 | Ding S. Y., Wang W., Chem. Soc. Rev., 2013, 42, 548—568 |
142 | Shinde D. B., Kandambeth S., Pachfule P., Kumar R. R., Banerjee R., Chem. Commun., 2015, 51, 310—313 |
143 | Stegbauer L., Schwinghammer K., Lotsch B. V., Chem. Sci., 2014, 5, 2789—2793 |
144 | Xu H., Gao J., Jiang D. L., Nature Chem., 2015, 7, 905—912 |
145 | Liu X. Z., Wang Y. J., Liu Y. Z., Li Z. L., Li H., Fang Q. R., Jin Y. R., Chem. J. Chinese Universities, 2019, 40(9), 1813—1817(刘小舟, 王钰杰, 刘耀祖, 李宗龙, 李辉, 方千荣, 金永日. 高等学校化学学报, 2019, 40(9), 1813—1817) |
146 | Huang N., Chen X., Krishna R., Jiang D. L., Angew. Chem. Int. Ed., 2015, 54, 2986—2990 |
147 | Xiang Z. H., Cao D. P., Dai L. M., Polym. Chem., 2015, 6, 1896—1911 |
148 | Jin Y. H., Hu Y. M., Zhang W., Nature Rev. Chem., 2017, 1(7), 0056 |
149 | Zhou T. Y., Xu S. Q., Wen Q., Pang Z. F., Zhao X., J. Am. Chem. Soc., 2014, 136, 15885—15888 |
150 | Tong M. M., Yang Q. Y., Ma Q. T., Liu D. H., Zhong C. L., J. Mater. Chem. A, 2016, 4, 124—131 |
151 | Ying Y. P., Tong M. M., Ning S. C., Ravi S. K., Peh S. B., Tan S. C., Pennycook S. J., Zhao D., J. Am. Chem. Soc., 2020, 142(9), 4472—4480 |
152 | Li Y., Wu Q. X., Guo X. H., Zhang M. C., Chen B., Wei G. Y., Li X., Li X. F., Li S. J., Ma L. J., Nature Commun., 2020, 11, 599 |
153 | Fan H. W., Peng M. H., Strauss I., Mundstock A., Meng H., Caro J., J. Am. Chem. Soc., 2020, 142, 15, 6872—6877 |
154 | Bureekaew S., Shimomura S., Kitagawa S., Sci. Technol. Adv. Mater., 2008, 9, 014108 |
155 | Kitagawa S., Kitaura R., Noro S., Angew. Chem. Int. Ed., 2004, 43, 2334—2375 |
156 | Yang J., Li G. D., Cao J. J., Yue Q., Li G. H., Chen J. S., Chem. Eur. J., 2007, 13, 3248—3261 |
157 | Cheetham A. K., Rao C. N. R., Feller R. K., Chem. Commun., 2006, 4780—4795 |
158 | Kajiro H., Kondo A., Kaneko K., Kanoh H., Int. J. Mol. Sci., 2010, 11, 3803—3845 |
159 | Zhang M., Feng G. X., Song Z. G., Zhou Y. P., Chao H. Y., Yuan D. Q., Tan T. T. Y., Guo Z. G., Hu Z. G., Tang B. Z., Liu B., Zhao D., J. Am. Chem. Soc., 2014, 136, 7241—7244 |
160 | Dmitriev A., Spillmann H., Lin N., Barth J. V., Kern K., Angew. Chem. Int. Ed., 2003, 42, 2670—2673 |
161 | Yaghi O. M., O’Keeffe M., N. Ockwig M., Chae H. K., Eddaoudi M., Kim J., Nature, 2003, 423, 705—714 |
162 | Furukawa H., Cordova K. E., O’Keeffe M., Yaghi O. M., Science, 2013, 341, 1230444 |
163 | Férey G., Chem. Soc. Rev., 2008, 37, 191—214 |
164 | Li B., Wen H. M., Cui Y. J., Zhou W., Qian G. D., Chen B. L., Adv. Mater., 2016, 28, 8819—8860 |
165 | He Y. B., Li B., O’Keeffe M., Chen B. L., Chem. Soc. Rev., 2014, 43, 5618—5656 |
166 | Yan Y., Yang S. H., Blake A. J., Schröder M., Acc. Chem. Res., 2014, 47, 296—307 |
167 | Uemura T., Yanai N., Kitagawa S., Chem. Soc. Rev., 2009, 38, 1228—1236 |
168 | Lu W. G., Wei Z. W., Gu Z. Y., Liu T. F., Park J. H., Park J. H., Tian J., Zhang M. W., Zhang Q., Gentle III T., Bosch M., Zhou H. C., Chem. Soc. Rev., 2014, 43, 5561—5593 |
169 | Eddaoudi M., Moler A. B., Li H. L., Chen B. L., Reineke T. M., O’Keeffe M., Yaghi O. M., Acc. Chem. Res., 2001, 34, 319—330 |
170 | Deng H. X., Grunder S., Cordova K. E., Valente C., Furukawa H., Hmadeh M., Gándara F., Whalley A. C., Liu Z., Asahina S., Kazumori H., O’Keeffe M., Terasaki O., Stoddart J. F., Yaghi O. M., Science, 2012, 336, 1018—1023 |
171 | Perry IV J. J., Perman J. A., Zaworotko M. J., Chem. Soc. Rev., 2009, 38, 1400—1417 |
172 | Wang Z. Q., Cohen S. M., Chem. Soc. Rev., 2009, 38, 1315—1329 |
173 | Liu X. L., Li Y. S., Ban Y. J., Peng Y., Jin H., Bux H., Xu L. Y., Caro J., Yang W. S., Chem. Commun., 2013, 49(80), 9140—9142 |
174 | Ban Y. J., Li Y. S., Peng Y., Jin H., Jiao W. M., Liu X. L., Yang W. S., Chem. Eur. J., 2014, 20, 11402—11409 |
175 | Sakamoto H., Kitaura R., Matsuda R., Kitagawa S., Kubota Y., Takata M., Chem. Lett., 2010, 39, 218—219 |
176 | Tanabe K. K., Cohen S. M., Chem. Soc. Rev., 2011, 40, 498—519 |
177 | Janiak C., Vieth J. K., New J. Chem., 2010, 34, 2366—2388 |
178 | Millward A. R., Yaghi O. M., J. Am. Chem. Soc., 2005, 127, 17998—17999 |
179 | Furukawa H., Ko N., Go Y. B., Aratani N., Choi S. B., Choi E., Yazaydin A. Ö., Snurr R. Q., O’Keeffe M., Kim J., Yaghi O. M., Science, 2010, 329, 424—428 |
180 | Murray L. J., Dincǎ M., Long J. R., Chem. Soc. Rev., 2009, 38, 1294—1314 |
181 | Liu Y., Ban Y. J., Yang W. S., Adv. Mater., 2017, 29, 1606949 |
182 | Kang Z. X., Xue M., Fan L. L., Huang L., Wei G. Y., Qiu S. L., Chem. J. Chinese Universities, 2013, 34(11), 2457—2461(康子曦, 薛铭, 范黎黎, 黄麟, 卫国英, 裘式纶. 高等学校化学学报, 2013, 34(11), 2457—2461) |
183 | Qiu S. L., Xue M., Zhu G. S., Chem. Soc. Rev., 2014, 43, 6116—6140 |
184 | Wang C. H., Liu X. L., Demir N. K., Chen J. P., Li K., Chem. Soc. Rev., 2016, 45, 5107—5134 |
185 | Chen B. L., Xiang S. C., Qian G. D., Acc. Chem. Res., 2010, 43, 1115—1124 |
186 | Lee J. Y., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. T., Hupp J. T., Chem. Soc. Rev., 2009, 38, 1450—1459 |
187 | Wu C. D., Hu A. G., Zhang L., Lin W. B., J. Am. Chem. Soc., 2005, 12, 8940—8941 |
188 | Czaja A. U., Trukhan N., Müller U., Chem. Soc. Rev., 2009, 38, 1284—1293 |
189 | Li S. L., Xu Q., Energy Environ. Sci., 2013, 6, 1656—1683 |
190 | Talin A. A., Centrone A., Ford A. C., Foster M. E., Stavila V., Haney P., Kinney R. A., Szalai V., Gabaly F. E., Yoon H. P., Léonard F., Allendorf M. D., Science, 2013, 343, 66—69 |
191 | Demir⁃Cakan R., Morcrette M., Nouar F., Davoisne C., Devic T., Gonbeau D., Dominko R., Serre C., Férey G., Tarascon J., J. Am. Chem. Soc., 2011, 133, 16154—16160 |
192 | Choi K. M., Jeong H. M., Park J. H., Zhang Y. B., Kang J. K., Yaghi O. M., ACS Nano, 2014, 8, 7451—7457 |
193 | Britt D., Furukawa H., Wang B., Glover T. G., Yaghi O. M., P. Natl. Acad. Sci. USA, 2009, 106, 20637—20640 |
194 | Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P., J. Am. Chem. Soc., 2008, 130, 13850—13851 |
195 | Shah M., Mccarthy M. C., Sachdeva S., Lee A. K., Jeong H. K., Ind. Eng. Chem. Res., 2012, 51, 2179—2199 |
196 | Seoane B., Coronas J., Gascon I., Benavides M. E., Karvan O., Caro J., Kapteijn F., Gascon J., Chem. Soc. Rev., 2015, 44, 2421—2454 |
197 | Brown A. J., Brunelli N. A., Eum K., Rashidi F., Johnson J. R., Koros W. J., Jones C. W., Nair S., Science, 2014, 345, 72—75 |
198 | Ma. X. L., Kumar P., Mittal N., Khlyustova A., Daoutidis P., Mkhoyan K. A., Tsapatsis M., Science, 2018, 361, 1008—1011 |
199 | Sakamoto R., Takada K., Pal T., Maeda H., Kambe T., Nishihara H., Chem. Commun., 2017, 53, 5781—5801 |
200 | Duan C. J., Cao Y. M., Jie X. M., Wang L. N., Yuan Q., Chem. J. Chinese Universities, 2014, 35(7), 1584—1589(段翠佳, 曹义鸣, 介兴明, 王丽娜, 袁权. 高等学校化学学报, 2014, 35(7), 1584—1589) |
201 | Ashworth A. J., Foster J. A., J. Mater. Chem. A, 2018, 6, 16292—16307 |
202 | Gallego A., Hermosa C., Castillo O., Berlanga I., Gómez⁃García C. J., Mateo⁃Martí E., Martínez J. I., Flores F., Gómez⁃Navarro C., Gómez⁃Herrero J., Delgado S., Zamora F., Adv. Mater., 2013, 25, 2141—2146 |
203 | Masciocchi N., Castelli F., Forster P. M., Tafoya M. M., Cheetham A. K., Inorg. Chem., 2003, 42, 6147—6152 |
204 | Chen R. Z., Yao J. F., Gu Q. F., Smeets S., Baerlocher C., Gu H. X., Zhu D. R., Morris W., Yaghi O. M., Wang H. T., Chem. Commun., 2013, 49(82), 9500—9502 |
205 | Motoyama S., Makiura R., Sakata O., Kitagawa H., J. Am. Chem. Soc., 2011, 133, 5640—5643 |
206 | Jian M. P., Qiu R. S., Xia Y., Lu J., Chen Y., Gu Q. F., Liu R. P., Hu C. Z., Qu J. H., Wang H. T., Zhang X. W., Sci. Adv., 2020, 6, eaay3998 |
207 | Peng Y., Li Y. S., Ban Y. J., Jin H, Jiao W. M., Liu X. L., Yang W. S., Science, 2014, 346, 1356—1359 |
208 | Peng Y., Li Y. S., Ban Y. J., Yang W. S., Angew. Chem. Int. Ed., 2017, 56, 9757—9761 |
209 | Rodenas T., Luz I., Prieto G., Seoane B., Miro H., Corma A., Kapteijn F., Llabrés i Xamena F. X. L., Gascon J., Nature Mater., 2015, 14, 48—55 |
210 | Pustovarenko A., Goesten M. G., Sachdeva S., Shan M., Amghouz Z., Belmabkhout Y., Dikhtiarenko A., Rodenas T., Keskin D., Voets I. K., Weckhuysen B. M., Eddaoudi M., de Smet L. C. P. M., Sudhölter E. J. R., Kapteijn F., Seoane B., Gascon J., Adv. Mater., 2018, 1707234 |
211 | Li G., Zhang K., Tsuru T., ACS Appl. Mater. Interfaces, 2017, 9, 8433—8436 |
212 | Kang Z. X., Peng Y. W., Qian Y. H., Yuan D. Q., Addicoat M. A., Heine T., Hu Z. G., Tee L., Guo Z. G., Zhao D., Chem. Mater., 2016, 18, 1277—1285 |
213 | Zhao M. T., Wang Y. X., Ma Q. L., Huang Y., Zhang X., Ping J. F., Zhang Z. C., Lu Q. P., Yu Y. F., Xu H., Zhao Y. L., Zhang H., Adv. Mater., 2015, 27, 7372—7278 |
214 | Wang X. R., Chi C. L., Zhang K., Qian Y. H., Gupta K. M., Kang Z. X., Jiang J. W., Zhao D., Nature Commun., 2017, 8, 14460 |
215 | Li Y. J., Liu H. O., Wang H. T., Qiu J. S., Zhang X. F., Chem. Sci., 2018, 9, 17, 4132—4141 |
216 | Li Y. J., Lin L., Tu M., Nian P., Howarth A. J., Farha O. K., Qiu J. S., Zhang X. F., Nano Res., 2018, 11, 4, 1850—1860 |
217 | Kong L. Y., Zhang X .F., Liu H. O., Qiu J. S., J. Membr. Sci., 2015, 490, 354—363 |
218 | Peng Y., Yang W. S., Adv. Mater. Interfaces, 2020, 7, 1901514 |
[1] | 姚伊婷, 吕佳敏, 余申, 刘湛, 李昱, 李小云, 苏宝连, 陈丽华. 等级孔微孔-介孔Fe2O3/ZSM-5中空分子筛催化材料的制备及催化苄基化性能[J]. 高等学校化学学报, 2022, 43(8): 20220090. |
[2] | 陈玮琴, 吕佳敏, 余申, 刘湛, 李小云, 陈丽华, 苏宝连. 有机杂化介孔Beta分子筛的合成及在苯甲醇烷基化反应中的应用[J]. 高等学校化学学报, 2022, 43(6): 20220086. |
[3] | 李志光, 齐国栋, 徐君, 邓风. Sn-Al-β分子筛酸性在葡萄糖转化反应中作用的固体NMR研究[J]. 高等学校化学学报, 2022, 43(6): 20220138. |
[4] | 李加富, 张凯, 王宁, 孙启明. 分子筛限域单原子金属催化剂的研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220032. |
[5] | 孟祥龙, 杨歌, 郭海玲, 刘晨光, 柴永明, 王纯正, 郭永梅. 纳米分子筛的合成及硫化氢吸附性能[J]. 高等学校化学学报, 2022, 43(3): 20210687. |
[6] | 王寿柏, 吴修明, 束辰, 钟敏, 黄卫, 颜德岳. 含叔丁基聚酰亚胺均质膜的气体分离性能[J]. 高等学校化学学报, 2022, 43(11): 20220357. |
[7] | 魏李娜, 彭莉, 朱锋, 顾鹏飞, 顾学红. 中空纤维Au-CeZr/FAU催化膜的制备及在富氢气氛CO选择性氧化反应中的应用[J]. 高等学校化学学报, 2022, 43(10): 20220175. |
[8] | 李海勃, 肖长发, 江龙, 黄云, 淡宜. MCM-41分子筛负载氯化铝催化丙烯酸甲酯与1-辛烯共聚[J]. 高等学校化学学报, 2021, 42(9): 2974. |
[9] | 李奕川, 朱国富, 王宇, 柴永明, 刘晨光, 何盛宝. 基底表面性质与前驱液化学环境对原位定向构筑钛硅分子筛膜的影响[J]. 高等学校化学学报, 2021, 42(9): 2934. |
[10] | 罗强强, 金少青, 孙洪敏, 杨为民. 液相酸溶液后补钛合成Ti-MWW分子筛[J]. 高等学校化学学报, 2021, 42(9): 2742. |
[11] | 张旭, 阙家乾, 侯月新, 吕佳敏, 刘湛, 雷坤皓, 余申, 李小云, 陈丽华, 苏宝连. 等级孔介孔-微孔TS-1分子筛单晶的合成及催化氯丙烯环氧化性能[J]. 高等学校化学学报, 2021, 42(8): 2529. |
[12] | 王磊, 孙毯毯, 闫娜娜, 马超, 刘晓娜, 田鹏, 郭鹏, 刘中民. 利用适用于SAPO-34的有机结构导向剂合成SSZ-13分子筛[J]. 高等学校化学学报, 2021, 42(6): 1716. |
[13] | 李健, 于明明, 孙源, 冯文华, 冯兆池, 吴剑峰. 水溶液pH对甲烷低温氧化制备甲醇的影响[J]. 高等学校化学学报, 2021, 42(3): 776. |
[14] | 王冶, 张晓思, 孙丽婧, 李冰, 刘琳, 杨淼, 田鹏, 刘仲毅, 刘中民. 有机硅烷辅助合成特殊形貌SAPO分子筛[J]. 高等学校化学学报, 2021, 42(3): 683. |
[15] | 王勇, 董彪, 孙娇, 董德录, 孙连坤. 基于分子筛模板的银/硅铝无定形结构复合材料的合成及光谱性质[J]. 高等学校化学学报, 2021, 42(10): 3233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||