高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (4): 1017.doi: 10.7503/cjcu20200508
王增强1,2, 孙一翎1(), 钱正芳1(
), 王任衡1(
)
收稿日期:
2020-07-31
出版日期:
2021-04-10
发布日期:
2020-12-03
通讯作者:
孙一翎
E-mail:sunyl@szu.edu.cn;zq001@szu.edu.cn;wangrh@szu.edu.cn
作者简介:
钱正芳, 男, 博士, 特聘教授, 主要从事可穿戴柔性电子力学模型方面的研究. E-mail: 基金资助:
WANG Zengqiang1,2, SUN Yiling1(), QIAN Zhengfang1(
), WANG Renheng1(
)
Received:
2020-07-31
Online:
2021-04-10
Published:
2020-12-03
Contact:
SUN Yiling
E-mail:sunyl@szu.edu.cn;zq001@szu.edu.cn;wangrh@szu.edu.cn
摘要:
金属锂具有高理论比容量和低还原电位, 是锂电池阳极的理想材料之一. 但在长期循环充放电过程中, 金属锂因锂枝晶生长会导致出现界面恶化及能量损失严重等问题, 对锂金属电极与电解质表界面反应的优化是一个重要研究方向. 本文介绍了锂枝晶产生的危害, 从分析及抑制锂枝晶沉积两方面综合评述了为解决这一问题所采取的方法, 包括固态电解质界面形成机制和保护机理、 表面改性、 三维锂阳极和液态/固态电解质等方法, 总结了各种方法的优劣势, 并展望锂金属电池在能源领域的研究前景.
中图分类号:
TrendMD:
王增强, 孙一翎, 钱正芳, 王任衡. 基于表界面反应及优化的锂金属电池研究进展. 高等学校化学学报, 2021, 42(4): 1017.
WANG Zengqiang, SUN Yiling, QIAN Zhengfang, WANG Renheng. Advances in Lithium Metal Batteries Based on Surface Interface Reaction and Optimization. Chem. J. Chinese Universities, 2021, 42(4): 1017.
Fig.2 Schematic diagram of Li dendrites(A) The formation of Li dendrites in bare Li metal[21]; (B) the optical photos of Li dendrites in glass capillary cell[22]; the mechanism of diffusion-reaction competition to control Li deposition included diffusion mechanism(C1) with scanning electron microscope(SEM) images(C3, C4) and reaction mechanism(C2) with corresponding SEM images(C5, C6)[25].(A) Copyright 2020, American Chemical Society;(B) Copyright 2016, The Royal Society of Chemistry;(C) Copyright 2020, Wiley-VCH.
Fig.3 Different models interpreting SEI forming(A) Mosaic model[32]; (B) two-layer/two-mechanism diffusion model[33]; (C) the open-circuit energy picture for an aqueous electrolyte[34].(A) Copyright 2015, American Chemical Society;(B) Copyright 2012, American Chemical Society;(C) Copyright 2010, American Chemical Society.
Fig.4 Li metal protected by surface modificationnote:The process of dual-layered film forming(A1), morphology image(A2) and the SEM image of guiding Li deposition homogeneously in FEC-LiPF6 with insert optical photograph(A3)[43]; the mechanism of Li ion intercalation and deposition in metal chloride perovskite(B1), Li electrodeposited morphology(B2) with insert SEM picture of the top surface and corresponding energy dispersive X-ray spectroscopy(EDX) mappings to convey the scattering of Sn and Cl on the surface followed by Li deposited[45].(A1—A3) Copyright 2018, Wiley-VCH; (B1, B2) Copyright 2020, Springer Nature.
Fig.5 Converting Li metal into Li alloy anodenote:(A1―A6) During cyclic processes, the changing for Li foil(A1) and Li-Mg alloy(A2) anodes with corresponding optical photographs (A3—A6)[46]; (B1―B3) the reactivity of Al anode in cell(B1) and SEM cross-section photograph(B2) representing Al4N-AR(purity 99.99%, as-rolled Al) foil structure changing after lithiation, as for expressing the cycle performance of LiCoO2|Al battery with insert SEM image showing Al anode morphology after 120 cycles(B3)[51].(A1—A6) Copyright 2019, Wiley-VCH; (B1—B3) Copyright 2020, Springer Nature.
Fig.6 Constructing 3D Li anodenote:(A1—A3) The preparation process for three-dimensional porous Cu foil(A1) and different electrochemical deposition behaviors of Li on planar current collector(A2) and three-dimensional current collector(A3)[40]; (B1—B3) the porous Cu current collector(B1), and a simulation result of current density distribution on the surface of Cu-5-50-12(B2) with SEM image(B3)[55]; (C1, C2)the procedure of three-dimensional porous Li/CuZn composite anode(C1) with corresponding SEM pictures for Li stripping and plating(C2)[21].(A1—A3) Copyright 2015, Springer Nature; (B1—B3) Copyright 2017, Wiley-VCH; (C1, C2) Copyright 2020, American Chemical Society.
Fig.7 Action of liquid electrolyte to LMBsnote:Schematic diagram of high-concentration ether acting on LMBs(A1) and cycling performance for Li|NMC333 battery with LiFSI-1.4DME electrolyte under 4.3V(A2)[66]; the LiDFOB compound(B1) as a capping agent to LiF(B2), comparing the difference between SEI produced by LiDFOB(B3) and LiBF4+LiBOB(B4) with respective diffusion fields(B5 corresponds to B3, B6 corresponds to B4)[74]; schematic illustration of different molecular structure, LUMO, Ab initio molecular dynamics model for EC, FEC and DEC respectively[81].(A1, A2) Copyright 2019, American Chemical Society; (B1—B6) Copyright 2018, Royal Society of Chemistry; (C) Copyright 2017, Wiley-VCH.
Fig.8 Solid state electrolyte as another method guarding LMBsnote:Schematic illustration of SPEI and PEI formations respectively with partial enlarged drawing described Li ion moving between Li6PS5Cl and SPE(A1), and a Nyquist plot for LMBs(A2)[88]; the procedure of GPE synthesizing(B1) and the Li anode changing in 3D-GPE during cycles(B2)[97]; molten Li wetting the surface of ISEs modified by ZnO(C1) with corresponding cross-section SEM image(C2) and optical photographs(C3, C4) after Li diffusing[101].(A1, A2) Copyright 2019, American Chemical Society; (B1, B2) Copyright 2017, Wiley-VCH; (C1~C4) Copyright 2017, American Chemical Society.
Fig.9 Realizing the self?repair of Li anode during cyclesnote:(A1, A2) The illustration of Li deposition process based on self-healing electrostatic shield mechanism[102]; self-regulated LiRAP SEI layer in 1st cycle(B1) with SEM image(B2), 100th cycle(B3) with SEM image(B4) and a cycling profile in Li|S full cell(B5) with corresponding SEM picture(B6) for LiRAP/Li/Cu after 200 cycles[22].(A1, A2) Copyright 2013, American Chemical Society; (B1—B6) Copyright 2020, American Chemical Society.
1 | Wang R. H., Dai X. Y., Qian. Z. F., Sun Y. L., Fan S. T., Xiong K. Y., Zhang H., Wu F. X., ACS Mater. Letter., 2020, 2(4), 280—290 |
2 | Li R., Sun X. G., Zou J. Y., He Q., Chem. J. Chinese Universities, 2020, 41(8), 1866—1872(李锐, 孙晓刚, 邹婧怡, 何强. 高等学校化学学报, 2020, 41(8), 1866—1872) |
3 | Wang R. H., Cui W. S., Chu F. L., Wu F. X., J. Energy Chem., 2020, 48, 145—159 |
4 | Cheng X. B., Zhang R., Zhao C. Z., Zhang Q., Chem. Rev., 2017, 117(15), 10403—10473 |
5 | Wang L., Zhou Z. Y., Yan X., Hou F., Wen L., Luo W. B., Liang J., Dou S. X., Energy Storage Mater., 2018, 14, 22—48 |
6 | Li N. W., Yin Y. X., Li J. Y., Zhang C. H., Guo Y. G., Adv. Sci., 2016, 4(2), 1600400 |
7 | Wang F. C., Zhou W. L., Chem. J. Chinese Universities, 2018, 39(11), 2529—2533(王凤春, 周万里. 高等学校化学学报, 2018, 39(11), 2529—2533) |
8 | Whittingham M. S., Chem. Rev., 2004, 104(10), 4271—4301 |
9 | Wu F. X., Maier J., Yu Y., Chem. Soc. Rev., 2020, 49(5), 1569—1614 |
10 | Zhan C., Wu T. P., Lu J., Amine K., Energy Environ. Sci., 2018, 11(2), 243—257 |
11 | Aurbach D., Pollak E., Elazari R., Salitra G., Kelley C. S., Affinito J., J. Electrochem. Soc., 2009, 156(8), A694—A702 |
12 | Ye L., Liao M., Sun H., Yang Y. F., Tang C. Q., Zhao Y., Wang L., Xu Y. F., Zhang L. J., Wang B. J., Xu F., Sun X. M., Zhang Y., Dai H. J., Bruce P. G., Peng H. S., Angew. Chem. Int. Ed., 2019, 58(8), 2437—2442 |
13 | Cheng X. B., Peng H. J., Huang J. Q., Wei F., Zhang Q., Small, 2014, 10(21), 4257—4263 |
14 | Xu G. Y., Yan Q. B., Wang S. T., Kushima A., Bai P., Liu K., Zhang X. G., Tang Z. L., Li J., Chem. Sci., 2017, 8(9), 6619—6625 |
15 | Bai P., Guo J. Z., Wang M., Kushima A., Su L., Li J., Brushett F. R., Bazant M. Z., Joule, 2018, 2(11), 2434—2449 |
16 | Park S. M., Yu H. J., Kim K. H., Kang Y. C., Cho W. L., J. Korean Electrochem. Soc., 2017, 20(2), 27—33 |
17 | Zhong G. B., Wang Z. H., Liang X., Xiang H. F., Energy Storage Sci. Technol., 2018, 7(6), 1139—1145 |
18 | Liang Y. R., Zhao C. Z., Yuan H., Chen Y., Zhang W. C., Huang J. Q., Yu D. S., Liu Y. L., Titirici M. M., Chueh Y. L., Yu H. J., Zhang Q., InfoMat, 2019, 1(1), 6—32 |
19 | Jaumaux P., Liu Q., Zhou D., Xu X. F., Wang T. Y., Wang Y. Z., Kang F. Y., Li B. H., Wang G. X., Angew. Chem. Int. Ed., 2020, 59(23), 9134—9142 |
20 | Li S., Jiang M. W., Xie Y., Xu H., Jia J. Y., Li J., Adv. Mater., 2018, 30(17), 1706375 |
21 | Chi S. S., Wang Q. R., Han B., Luo C., Jiang Y. D., Wang J., Wang C. Y., Yu Y., Deng Y. H., Nano Lett., 2020, 20(4), 2724—2732 |
22 | Bai P., Li J., Brushett F. R., Bazant M. Z., Energy Environ. Sci., 2016, 9(10), 3221—3229 |
23 | Han B., Feng D. Y., Li S., Zhang Z., Zou Y. C., Gu M., Meng H., Wang C. Y., Xu K., Zhao Y. S., Zeng H. B., Wang C. S., Deng Y. H., Nano Lett., 2020, 20(5), 4029—4037 |
24 | Zhuang J. C., Wang X. S., Xu M. Q., Chen Z., Liu M. Z., Cheng X. Q., Li W. S., J. Mater. Chem. A, 2019, 7(45), 26002—26010 |
25 | Chen X. R., Yao Y. X., Yan C., Zhang R., Cheng X. B., Zhang Q., Angew. Chem. Int. Ed., 2020, 59(20), 7743—7747 |
26 | Chen L., Zhang H. W., Liang L. Y., Liu Z., Qi Y., Lu P., Chen J., Chen L. Q., J. Power Sources, 2015, 300, 376—385 |
27 | Jana A., Woo S. I., Vikrant K. S. N., Garcia R. E., Energy Environ. Sci., 2019, 12(12), 3595—3607 |
28 | Gireaud L., Grugeon S., Laruelle S., Yrieix B., Tarascon J. M., Electrochem. Commun., 2006, 8(10), 1639—1649 |
29 | Steiger J., Kramer D., Moenig R., J. Power Sources, 2014, 261, 112—119 |
30 | Akolkar R., J. Power Sources, 2014, 246, 84—89 |
31 | Peled E., J. Electrochem. Soc., 1979, 126(12), 2047—2051 |
32 | Gauthier M., Carney T. J., Grimaud A., Giordano L., Pour N., Chang H. H., Fenning D. P., Lux S. F., Paschos O., Bauer C., Maglia F., Lupart S., Lamp P., Shao⁃Horn Y., J. Phys. Chem. Lett., 2015, 6(22), 4653—4672 |
33 | Shi S. Q., Lu P., Liu Z. Y., Qi Y., Hector L. G., Li H., Harris S. J., J. Am. Chem. Soc., 2012, 134(37), 15476—15487 |
34 | Goodenough J. B., Kim Y., Chem. Mater., 2010, 22(3), 587—603 |
35 | Verma P., Maire P., Novak P., Electrochim. Acta, 2010, 55(22), 6332—6341 |
36 | Winter M., Z. Phys. Chem., 2009, 223(10/11), 1395—1406 |
37 | Ryu J., Song W. J., Lee S., Choi S., Park S., Adv. Funct. Mater., 2020, 30(2), 1902499 |
38 | Han Y. H., Jie Y. L., Huang F. Y., Chen Y. W., Lei Z. W., Zhang G. Q., Ren X. D., Qin L. J., Cao R. G., Jiao S. H., Adv. Funct. Mater., 2019, 29(46), 1904629 |
39 | Cheng X. B., Yan C., Peng H. J., Huang J. Q., Yang S. T., Zhang Q., Energy Storage Mater., 2018, 10, 199—205 |
40 | Yang C. P., Yin Y. X., Zhang S. F., Li N. W., Guo Y. G., Nat. Commun., 2015, 6, 8058 |
41 | Li X., Chen L., Ma X. T., Zhang D., Xu S. D., Zhou X. X., Duan D. H., Liu S. B., Chem. J. Chinese Universities, 2019, 40(9), 1972—1978(李新, 陈良, 马晓涛, 张鼎, 徐守冬, 周娴娴, 段东红, 刘世斌. 高等学校化学学报, 2019, 40(9), 1972—1978) |
42 | Xu R., Xiao Y., Zhang R., Cheng X. B., Zhao C. Z., Zhang X. Q., Yan C., Zhang Q., Huang J. Q., Adv. Mater., 2019, 31(19), 1808392 |
43 | Yan C., Cheng X. B., Tian Y., Chen X., Zhang X. Q., Li W. J., Huang J. Q., Zhang Q., Adv. Mater., 2018, 30(25), 1707629 |
44 | Liang X., Pang Q., Kochetkov I. R., Sempere M. S., Huang H., Sun X. Q., Nazar L. F., Nat. Energy, 2017, 2(9), 17119 |
45 | Yin Y. C., Wang Q., Yang J. T., Li F., Zhang G. Z., Jiang C. H., Mo H. S., Yao J. S., Wang K. H., Zhou F., Ju H. X., Yao H. B., Nat. Commun., 2020, 11(1), 1761 |
46 | Kong L. L., Wang L., Ni Z. C., Liu S., Li G. R., Gao X. P., Adv. Funct. Mater., 2019, 29(13), 1808756 |
47 | Shen X., Cheng X. B., Shi P., Huang J. Q., Zhang X. Q., Yan C., Li T., Zhang Q., J. Energy Chem., 2019, 37, 29—34 |
48 | Sun Z. W., Jin S., Jin H. C., Du Z. Z., Zhu Y. W., Cao A. Y., Ji H. X., Wan L. J., Adv. Mater., 2018, 30(32), 1800884 |
49 | Ishikawa M., Kawasaki H., Yoshimoto N., Morita M., J. Power Sources, 2005, 146(1/2), 199—203 |
50 | Ma J. L., Meng F. L., Yu Y., Liu D. P., Yan J. M., Zhang Y., Zhang X. B., Jiang Q., Nat. Chem., 2019, 11(1), 64—70 |
51 | Li H. Y., Yamaguchi T., Matsumoto S., Hoshikawa H., Kumagai T., Okamoto N. L., Ichitsubo T., Nat. Commun., 2020, 11(1), 1584 |
52 | Chen D., Tan H. T., Rui X. H., Zhang Q., Feng Y. Z., Geng H. B., Li C. C., Huang S. M., Yu Y., InfoMat., 2019, 1(4), 251—259 |
53 | Xiong W. S., Xia Y., Jiang Y., Qi Y. Y., Sun W. W., He D., Liu Y. M., Zhao X. Z., ACS Appl. Mater. Interfaces, 2018, 10(25), 21254—21261 |
54 | Li Q., Zhu S. P., Lu Y. Y., Adv. Funct. Mater., 2017, 27(18), 1606422 |
55 | Wang S. H., Yin Y. X., Zuo T. T., Dong W., Li J. Y., Shi J. L., Zhang C. H., Li N. W., Li C. J., Guo Y. G., Adv. Mater., 2017, 29(40), 1703729 |
56 | Zhao B., Li B. B., Wang Z. X., Xu C. X., Liu X. Y., Yi J., Jiang Y., Li W. X., Li Y., Zhang J. J., ACS Appl. Mater. Interfaces, 2020, 12(17), 19530—19538 |
57 | Huang G. X., Guo P. M., Wang J., Chen S. R., Liang J. Y., Tao R. M., Tang S., Zhang X. F., Cheng S. J., Cao Y. C., Dai S., Chem. Eng. J., 2020, 384, 123313 |
58 | Huang G. X., Chen S. R., Guo P. M., Tao R. M., Jie K. C., Liu B., Zhang X. F., Liang J. Y., Cao Y. C., Chem. Eng. J., 2020, 395, 125122 |
59 | Yamada Y., Usui K., Sodeyama K., Ko S., Tateyama Y., Yamada A., Nat. Energy, 2016, 1, 16129 |
60 | Suo L. M., Borodin O., Gao T., Olguin M., Ho J., Fan X. L., Luo C., Wang C. S., Xu K., Science, 2015, 350(6263), 938—943 |
61 | Dong L., Nie L., Liu W., Adv. Mater., 2020, 32(14), 1908494 |
62 | Li Y. L., Yang Z. F., Wu Z. R., Li J., Zou J., Jiang C., Yang J. Y., Wang L. P., Niu X. B., Solid State Ionics, 2018, 324, 144—149 |
63 | Jiao S. H., Ren X. D., Cao R. G., Engelhard M. H., Liu Y. Z., Hu D. H., Mei D. H., Zheng J. M., Zhao W. G., Li Q. Y., Liu N., Adams B. D., Ma C., Liu J., Zhang J. G., Xu W., Nat. Energy, 2018, 3(9), 739—746 |
64 | Pistoia G., J. Electrochem. Soc., 1971, 118(1), 153—158 |
65 | Xu K., Chem. Rev., 2004, 104(10), 4303—4417 |
66 | Ren X. D., Zou L. F., Jiao S. H., Mei D. H., Engelhard M. H., Li Q. Y., Lee H. Y., Niu C. J., Adams B. D., Wang C. M., Liu J., Zhang J. G., Xu W., ACS Energy Lett., 2019, 4(4), 896—902 |
67 | Park M. S., Ma S. B., Lee D. J., Im D., Doo S. G., Yamamoto O., Sci. Rep., 2014, 4, 3815 |
68 | Bai M. H., Xie K. Y., Yuan K., Zhang K., Li N., Shen C., Lai Y. Q., Vajtai R., Ajayan P., Wei B. Q., Adv. Mater., 2018, 30(29), 1801213 |
69 | Markevich E., Salitra G., Chesneau F., Schmidt M., Aurbach D., ACS Energy Lett., 2017, 2(6), 1321—1326 |
70 | Shi J., Yang Y. F., Shao H. X., J. Membr. Sci., 2018, 547, 1—10 |
71 | Wang M. Q., Peng Z., Luo W. W., Ren F. H., Li Z. D., Zhang Q., He H. Y., Ouyang C. Y., Wang D. Y., Adv. Energy Mater., 2019, 9(12), 1802912 |
72 | Zheng J. M., Engelhard M. H., Mei D. H., Jiao S. H., Polzin B. J., Zhang J. G., Xu W., Nat. Energy, 2017, 2(3), 17012 |
73 | Fan X. L., Chen L., Ji X., Deng T., Hou S. Y., Chen J., Zheng J., Wang F., Jiang J. J., Xu K., Wang C. S., Chem, 2018, 4(1), 174—185 |
74 | Jurng S., Brown Z. L., Kim J., Lucht B. L., Energy Environ. Sci., 2018, 11(9), 2600—2608 |
75 | Naoi K., Mori M., Naruoka Y., Lamanna W. M., Atanasoski R., J. Electrochem. Soc., 1999, 146(2), 462—469 |
76 | Ota H., Shima K., Ue M., Yamaki J., Electrochim. Acta, 2004, 49(4), 565—572 |
77 | He Y. T., Zhang Y. H., Yu P., Ding F., Li X. F., Wang Z. H., Lv Z., Wang X. J., Liu Z. G., Huang X. Q., J. Energy Chem., 2020, 45, 1—6 |
78 | Weber R., Genovese M., Louli A. J., Hames S., Martin C., Hill I. G., Dahn J. R., Nat. Energy, 2019, 4(8), 683—689 |
79 | Ren X. D., Zhang Y. H., Engelhard M. H., Li Q. Y., Zhang J. G., Xu W., ACS Energy Lett., 2018, 3(1), 14—19 |
80 | Xu Y. B., Wu H. P., He Y., Chen Q. S., Zhang J. G., Xu W., Wang C. M., Nano Lett., 2020, 20(1), 418—425 |
81 | Zhang X. Q., Cheng X. B., Chen X., Yan C., Zhang Q., Adv. Funct. Mater., 2017, 27(10), 1605989 |
82 | Zhang X. Q., Chen X., Cheng X. B., Li B. Q., Shen X., Yan C., Huang J. Q., Zhang Q., Angew. Chem. Int. Ed., 2018, 57(19), 5301—5305 |
83 | Manthiram A., Yu X. W., Wang S. F., Nat. Rev. Mater., 2017, 2(4), 16103 |
84 | Chen L., Li W. X., Fan L. Z., Nan C. W., Zhang Q., Adv. Funct. Mater., 2019, 29(28), 1901047 |
85 | Monroe C., Newman J., J. Electrochem. Soc., 2005, 152(2), A396—A404 |
86 | Cheng X. L., Pan J., Zhao Y., Liao M., Peng H. S., Adv. Energy Mater., 2018, 8(7), 1702184 |
87 | Fenton D. E., Parker J. M., Wright P. V., Polymer, 1973, 14(11), 589—589 |
88 | Simon F. J., Hanauer M., Henss A., Richter F. H., Janek J., ACS Appl. Mater. Interfaces, 2019, 11(45), 42186—42196 |
89 | Zhou W. D., Wang Z. X., Pu Y., Li Y. T., Xin S., Li X. F., Chen J. F., Goodenough J. B., Adv. Mater., 2019, 31(4), 1805574 |
90 | Gao L., Li J. X., Ju J. G., Wang L. Y., Yan J., Cheng B. W., Kang W. M., Deng N. P., Li Y. T., Chem. Eng. J., 2020, 389, 124478 |
91 | Hu Z. L., Zhang X. J., Liu J. L., Zhu Y. R., Front. Chem., 2020, 8, 232 |
92 | Wang W. M., Yi E. Y., Fici A. J., Laine R. M., Kieffer J., J. Phys. Chem. C, 2017, 121(5), 2563—2573 |
93 | Zhang Z., You J. H., Zhang S. J., Wang C. W., Zhou Y., Li J. T., Huang L., Sun S. G., ChemElectroChem, 2020, 7(5), 1125—1134 |
94 | Fan L., Wei S. Y., Li S. Y., Li Q., Lu Y. Y., Adv. Energy Mater., 2018, 8(11), 1702657 |
95 | Wang M., Guo Y., Wang B. Y., Luo H., Zhang X. M., Wang Q., Zhang Y., Wu H., Liu H. K., Dou S. X., J. Mater. Chem. A, 2020, 8(6), 2969—2983 |
96 | Zhang Y., Shi Y., Hu X. C., Wang W. P., Wen R., Xin S., Guo Y. G., Adv. Energy Mater., 2019, 10(3), 1903325 |
97 | Lu Q. W., He Y. B., Yu Q. P., Li B. H., Kaneti Y. V., Yao Y. W., Kang F. Y., Yang Q. H., Adv. Mater., 2017, 29(13), 1604460 |
98 | Chen W., Lei T. Y., Wu C. Y., Deng M., Gong C. H., Hu K., Ma Y. C., Dai L. P., Lv W. Q., He W. D., Liu X. J., Xiong J., Yan C. L., Adv. Energy Mater., 2018, 8(10), 1702348 |
99 | Ma X. N., Xu Y. L., Zhang B. F., Xue X., Wang C., He S. N., Lin J., Yang L., J. Power Sources, 2020, 453, 227881 |
100 | Cheng L., Crumlin E. J., Chen W., Qiao R. M., Hou H. M., Lux S. F., Zorba V., Russo R., Kostecki R., Liu Z., Persson K., Yang W. L., Cabana J., Richardson T., Chen G. Y., Doeff M., Phys. Chem. Chem. Phys., 2014, 16(34), 18294—18300 |
101 | Wang C. W., Gong Y. H., Liu B. Y., Fu K., Yao Y. G., Hitz E., Li Y. J., Dai J. Q., Xu S. M., Luo W., Wachsman E. D., Hu L. B., Nano Lett., 2017, 17(1), 565—571 |
102 | Ding F., Xu W., Graff G. L., Zhang J., Sushko M. L., Chen X., Shao Y., Engelhard M. H., Nie Z., Xiao J., Liu X., Sushko P. V., Liu J., Zhang J. G., J. Am. Chem. Soc., 2013, 135(11), 4450—4456 |
103 | Yang X. F., Sun Q., Zhao C. T., Gao X. J., Adair K., Zhao Y., Luo J., Lin X. T., Liang J. N., Huang H., Zhang L., Lu S. G., Li R. Y., Sun X. L., Energy Storage Mater., 2019, 22, 194—199 |
104 | Li L., Basu S., Wang Y. P., Chen Z. Z., Hundekar P., Wang B. W., Shi J., Shi Y. F., Narayanan S., Koratkar N., Science, 2018, 359(6383), 1513—1516 |
105 | Guo X. L., Ding Y., Xue L. G., Zhang L. Y., Zhang C. K., Goodenough J. B., Yu G. H., Adv. Funct. Mater., 2018, 28(46), 1804649 |
[1] | 骆鑫妍, 贾若男, 向勇, 张晓琨. 可拉伸聚合物基复合固体电解质研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220149. |
[2] | 李威, 罗飘, 黄廉湛, 崔志明. 基于聚苯乙烯磺酸的锂金属负极界面保护层的设计[J]. 高等学校化学学报, 2022, 43(8): 20220166. |
[3] | 杨英杰, 张晓蓉, 孙玉雪, 刘军, 谢海明. 一种双锂盐梳状聚合物电解质的制备及电化学性能[J]. 高等学校化学学报, 2021, 42(9): 2861. |
[4] | 李曈, 谷思辰, 林乔伟, 韩俊伟, 周光敏, 李宝华, 康飞宇, 吕伟. 基于三维集流体的无枝晶锂金属负极[J]. 高等学校化学学报, 2021, 42(5): 1480. |
[5] | 詹迎新, 石鹏, 张学强, 魏俊宇, 张乾魁, 黄佳琦. 锂金属负极亲锂骨架的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1569. |
[6] | 邹俊彦, 张焱焱, 陈石, 邵怀宇, 汤育欣. 全固态锂金属电池表界面化学的研究进展[J]. 高等学校化学学报, 2021, 42(4): 1005. |
[7] | 高小雅, 左自成, 李玉良. 石墨炔电化学电池界面构筑[J]. 高等学校化学学报, 2021, 42(2): 321. |
[8] | 韩慕瑶, 赵丽娜, 孙洁. 硅及硅基负极材料的研究进展[J]. 高等学校化学学报, 2021, 42(12): 3547. |
[9] | 王星帆, 周桓, 周阔, 金分丽, 杨军芳. 硝酸盐型卤水体系的综合热力学模型与多温相图预测[J]. 高等学校化学学报, 2021, 42(10): 3175. |
[10] | 周墨林, 蒋欣, 易婷, 杨向光, 张一波. 硫化物固态电解质Li10GeP2S12与锂金属间界面稳定性的改善研究[J]. 高等学校化学学报, 2020, 41(8): 1810. |
[11] | 孙孟莹,吕景春,徐红,张琳萍,钟毅,陈支泽,隋晓锋,毛志平. 磷腈-紫精聚合物的合成与电致变色性能[J]. 高等学校化学学报, 2020, 41(6): 1399. |
[12] | 叶慧, 刘亚博, 贾玉玺. 弱聚电解质水凝胶溶胀释药的数值模拟[J]. 高等学校化学学报, 2018, 39(4): 817. |
[13] | 王凤春, 周万里. 离子型添加剂四丁基胺-双(氟磺酰)亚胺对锂电池性能的影响[J]. 高等学校化学学报, 2018, 39(11): 2529. |
[14] | 艾淑娟, 宗成星, 吴为, 冯京京, 金灿, 付凤至, 刘靖, 孙冬兰, 郑琴, 郭也平. 环亚硫酸甘油酯衍生物作为电解液添加剂对锂离子电池电化学性能的影响[J]. 高等学校化学学报, 2018, 39(11): 2520. |
[15] | 周锦涛, 焦晓宁, 于宾, 任元林, 康卫民. 基于静电纺丝和静电喷射技术的P(VDF-HFP)/Al2O3/P(VDF-HFP)复合隔膜的制备与电化学性能分析[J]. 高等学校化学学报, 2017, 38(6): 1018. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||