高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (10): 2174.doi: 10.7503/cjcu20200272
王瑞1,2, 黄新松1, 刘天赋1, 曹荣1
收稿日期:
2020-05-20
出版日期:
2020-10-10
发布日期:
2020-10-08
基金资助:
WANG Rui1,2, HUANG Xinsong1, LIU Tian⁃Fu1(), CAO Rong1(
)
Received:
2020-05-20
Online:
2020-10-10
Published:
2020-10-08
Contact:
LIU Tian?Fu,CAO Rong
E-mail:tfliu@fjirsm.ac.cn;rcao@fjirsm.ac.cn
Supported by:
摘要:
鉴于一氧化碳(CO)氧化在基础研究、 环境保护和实际应用中的重要性, 人们对其进行了广泛的研究. 金属有机骨架(MOFs)由于具有永久孔隙, 结构多样且可调控, 是一种很有前途的CO氧化催化剂. 本文对近年来MOFs和MOF基催化剂用于CO氧化的研究进展进行了系统的总结, 并根据催化剂活性物种/位点进行了简要的分类介绍. 除了催化剂的化学结构, 催化剂的负载量、 制备方法和预处理技术以及反应温度等对催化性能的影响也在文中进行了讨论. 最后, 本综述对该研究领域进行了总结和展望.
中图分类号:
TrendMD:
王瑞, 黄新松, 刘天赋, 曹荣. 金属有机框架用于一氧化碳氧化. 高等学校化学学报, 2020, 41(10): 2174.
WANG Rui, HUANG Xinsong, LIU Tian⁃Fu, CAO Rong. Metal-organic Frameworks for CO Oxidation. Chem. J. Chinese Universities, 2020, 41(10): 2174.
Entry | Catalyst | Active species | Feed gas and volume ratio | GHSVa/ (mL·h?1·g?1) | T50b/℃ | T100c/℃ | Ref. |
---|---|---|---|---|---|---|---|
1 | [Cu(mipt)(H2O)](H2O)2 | Cu(II) | CO/O2/He, 1/20/79 | 20000 | NDd | 200 | [ |
2 | [Cu5(OH)2(nip)4(H2O)6](H2O)4.25 | Cu(II) | CO/O2/He, 1/20/79 | 20000 | 155 | 200 | [ |
3 | Cu3(OH)(C4H2N2O2)3 | Cu(II) | CO/O2/Ar, 1/6/93 | 30000 | ND | 230 | [ |
4 | CuBTC?443 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 240 | [ |
5 | CuBTC?503 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 200 | [ |
6 | CuBTC?523 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 170 | [ |
7 | CuBTC?553 | Cu(II) | CO/O2/N2, 1/0.5/78 | 30000 | ND | 290 | [ |
8 | FDM?3 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 200 | 220 | [ |
9 | FDM?4 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 180 | 210 | [ |
10 | FDM?5 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 215 | ND | [ |
11 | FDM?6 | Cu(I) | CO/O2/N2, 1/24/78 | 30000 | 195 | 220 | [ |
12 | FDM?7 | Cu(I) | CO/O2/N2, 1/24/78 | 30000 | 190 | 220 | [ |
13 | 2% Cu?MIL?101 | Cu NPs | CO/O2/He, 4/20/76 | 120000 | 275 | 289 | [ |
14 | Cu?BTC(C?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | ND | [ |
15 | Cu?BTC(R?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | 240 | [ |
16 | Cu?BTC(O?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | 260 | [ |
17 | Cu?BTC(W?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | ND | [ |
Entry | Catalyst | Active species | Feed gas and volume ratio | GHSVa/ (mL·h?1·g?1) | T50b/℃ | T100c/℃ | Ref. |
18 | Cu?BTC(S?350) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 190 | [ |
19 | Cu?BTC(S?400) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 190 | [ |
20 | Cu?BTC(S?500) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 155 | [ |
21 | Cu?BTC(S?600) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 185 | [ |
22 | Cu?BTC(S?700) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 170 | [ |
23 | Cu?BTC(CO?240) | Cu2O | CO/O2/N2, 1/20/79 | 24000 | 110 | 145 | [ |
24 | Cu?BTC(Ar?240) | ND | CO/O2/N2, 1/20/79 | 24000 | 237 | 255 | [ |
25 | Cu?BTC(O2?240) | CuO | CO/O2/N2, 1/20/79 | 24000 | 144 | 170 | [ |
26 | Cu?BTC(H2?240) | ND | CO/O2/N2, 1/20/79 | 24000 | 245 | 255 | [ |
27 | CoMOF?74 | Co(II) | CO/Air, 1/99 | 18000 | 84 | ND | [ |
28 | 20% Co/MIL?53(Al) | Co NPs | CO/Air, 3/97 | 52000 | ND | 180 | [ |
29 | ZIF?67(Co3O4?Ther) | Co3O4 | CO/O2/He, 1/20/79 | 30000 | 92 | ND | [ |
30 | ZIF?8(Co3O4?MOF) | Co3O4 | CO/O2/He, 1/20/79 | 30000 | 58 | 80 | [ |
31 | ZIF?67(Co3O4) | Co3O4 | CO/Air, 1/99 | 36000 | ND | 120 | [ |
32 | [Amine][Co(HCOO)3] (Co3O4?MA) | OV, OC and Co3+ sites | CO/O2 /He, 1/20/79 | 60000 | 160 | 170 | [ |
33 | [Amine][Co(HCOO)3] (Co3O4?DMA) | OV, OC and Co3+ sites | CO/O2 /He, 1/20/79 | 60000 | 157 | 170 | [ |
34 | Co3(BTC)2 | Co NPs | CO/Air, 1/99 | 48000 | ND | 160 | [ |
35 | Ce?BTC200 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 280 | 375 | [ |
36 | Ce?BTC250 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 240 | 340 | [ |
37 | Ce?BTC300 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 330 | 425 | [ |
38 | Ce?BTC250 after catalytic reaction | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 260 | 340 | [ |
39 | Ce?UiO?66(0.01?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 89 | 128 | [ |
40 | Ce?UiO?66(0.04?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 78 | 112 | [ |
41 | Ce?UiO?66(0.08?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 84 | 122 | [ |
42 | 0.5% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 225 | 255 | [ |
43 | 1.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 200 | ND | [ |
44 | 2.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 185 | ND | [ |
45 | 5.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 175 | 210 | [ |
46 | 1.5% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 175 | ND | [ |
47 | 2.8% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 165 | ND | [ |
48 | 4.0% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 155 | ND | [ |
49 | Au/MIL?101(573) | Au NPs | CO/O2/He, 1/20/79 | 20000 | ND | -120 | [ |
50 | 5.0% Pt@MIL?101 | Pt NPs | CO/O2/He, 1/20/79 | 20000 | ND | 150 | [ |
51 | Pt/N?UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 100 | 120 | [ |
52 | Pt/UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 130 | 140 | [ |
53 | Pt/NH2?UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 145 | 150 | [ |
54 | 2.7% Pd/MIL?53(Al) | Pd NPs | CO/O2/Ar, 1/21/78 | 30000 | 100 | 115 | [ |
55 | 5% Pd/Ce?MOF | Pd NPs | CO/O2/He, 4/20/76 | 240000 | 77 | 92 | [ |
56 | 1% Pd/Cu3(BTC)2?P | PdO2 NPs | CO/O2/He, 1/20/79 | 24000 | ND | 220 | [ |
57 | 2.9% Pd@MIL?101 | Pd NPs | CO/O2/He, 4/20/76 | 120000 | 97 | 147 | [ |
58 | 4.9% Pd@MIL?101 | Pd NPs | CO/O2/He, 4/20/76 | 120000 | 92 | 407 | [ |
59 | Ce?HKUST?1 | CuO?CeO2 | CO/O2/He, 1/20/79 | 109800 | 124 | 170 | [ |
60 | 0.5% Pd + 2%Cu?MIL?10 | PdCu NPs | CO/O2/He, 4/20/76 | 120000 | 175 | 180 | [ |
61 | 1% Pd + 2%Cu?MIL?101 | PdCu NPs | CO/O2/He, 4/20/76 | 120000 | 146 | 152 | [ |
62 | ZIF?67(Pt@Co3O4) | Pt NPs and Co3O4 | CO/O2 /He, 1.5/30/60 | 109800 | ND | 110 | [ |
63 | ZIF?67(Co3O4) | Pt NPs and Co3O4 | CO/O2 /He, 1.5/30/60 | 109800 | ND | 145 | [ |
64 | Cu3(BTC)2(5%?CuO/CeO2?600) | CuO/CeO | CO/O2/H2/N2, 2/3.3/50/47.7 | 18000 | ND | 140 | [ |
65 | MIL?100(Fe)(Ag?Fe) | Olatt/Oads | CO/O2/He, 1/20/79 | 18000 | 132 | 160 | [ |
66 | MIL?100(Fe)(Ag?Fe2O3) | ND | CO/O2/He, 1/20/79 | 18000 | 180 | 215 | [ |
67 | MIL?100(Fe)(Ag?PB) | ND | CO/O2/He, 1/20/79 | 18000 | >350 | >350 | [ |
68 | MIL?100(Fe)(Ag?Fe) | ND | CO/O2/He, 1/20/79 | 18000 | 230 | 275 | [ |
69 | Ce?BTC(CeO2/CuO?400) | CeO2/CuO | CO/O2/H2/N2, 1/1.7/50/47.3 | 18000 | ND | 110 | [ |
Table 1 Summary of MOFs and MOF-based catalysts(classified by elements) for CO oxidation
Entry | Catalyst | Active species | Feed gas and volume ratio | GHSVa/ (mL·h?1·g?1) | T50b/℃ | T100c/℃ | Ref. |
---|---|---|---|---|---|---|---|
1 | [Cu(mipt)(H2O)](H2O)2 | Cu(II) | CO/O2/He, 1/20/79 | 20000 | NDd | 200 | [ |
2 | [Cu5(OH)2(nip)4(H2O)6](H2O)4.25 | Cu(II) | CO/O2/He, 1/20/79 | 20000 | 155 | 200 | [ |
3 | Cu3(OH)(C4H2N2O2)3 | Cu(II) | CO/O2/Ar, 1/6/93 | 30000 | ND | 230 | [ |
4 | CuBTC?443 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 240 | [ |
5 | CuBTC?503 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 200 | [ |
6 | CuBTC?523 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 170 | [ |
7 | CuBTC?553 | Cu(II) | CO/O2/N2, 1/0.5/78 | 30000 | ND | 290 | [ |
8 | FDM?3 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 200 | 220 | [ |
9 | FDM?4 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 180 | 210 | [ |
10 | FDM?5 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 215 | ND | [ |
11 | FDM?6 | Cu(I) | CO/O2/N2, 1/24/78 | 30000 | 195 | 220 | [ |
12 | FDM?7 | Cu(I) | CO/O2/N2, 1/24/78 | 30000 | 190 | 220 | [ |
13 | 2% Cu?MIL?101 | Cu NPs | CO/O2/He, 4/20/76 | 120000 | 275 | 289 | [ |
14 | Cu?BTC(C?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | ND | [ |
15 | Cu?BTC(R?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | 240 | [ |
16 | Cu?BTC(O?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | 260 | [ |
17 | Cu?BTC(W?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | ND | [ |
Entry | Catalyst | Active species | Feed gas and volume ratio | GHSVa/ (mL·h?1·g?1) | T50b/℃ | T100c/℃ | Ref. |
18 | Cu?BTC(S?350) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 190 | [ |
19 | Cu?BTC(S?400) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 190 | [ |
20 | Cu?BTC(S?500) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 155 | [ |
21 | Cu?BTC(S?600) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 185 | [ |
22 | Cu?BTC(S?700) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 170 | [ |
23 | Cu?BTC(CO?240) | Cu2O | CO/O2/N2, 1/20/79 | 24000 | 110 | 145 | [ |
24 | Cu?BTC(Ar?240) | ND | CO/O2/N2, 1/20/79 | 24000 | 237 | 255 | [ |
25 | Cu?BTC(O2?240) | CuO | CO/O2/N2, 1/20/79 | 24000 | 144 | 170 | [ |
26 | Cu?BTC(H2?240) | ND | CO/O2/N2, 1/20/79 | 24000 | 245 | 255 | [ |
27 | CoMOF?74 | Co(II) | CO/Air, 1/99 | 18000 | 84 | ND | [ |
28 | 20% Co/MIL?53(Al) | Co NPs | CO/Air, 3/97 | 52000 | ND | 180 | [ |
29 | ZIF?67(Co3O4?Ther) | Co3O4 | CO/O2/He, 1/20/79 | 30000 | 92 | ND | [ |
30 | ZIF?8(Co3O4?MOF) | Co3O4 | CO/O2/He, 1/20/79 | 30000 | 58 | 80 | [ |
31 | ZIF?67(Co3O4) | Co3O4 | CO/Air, 1/99 | 36000 | ND | 120 | [ |
32 | [Amine][Co(HCOO)3] (Co3O4?MA) | OV, OC and Co3+ sites | CO/O2 /He, 1/20/79 | 60000 | 160 | 170 | [ |
33 | [Amine][Co(HCOO)3] (Co3O4?DMA) | OV, OC and Co3+ sites | CO/O2 /He, 1/20/79 | 60000 | 157 | 170 | [ |
34 | Co3(BTC)2 | Co NPs | CO/Air, 1/99 | 48000 | ND | 160 | [ |
35 | Ce?BTC200 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 280 | 375 | [ |
36 | Ce?BTC250 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 240 | 340 | [ |
37 | Ce?BTC300 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 330 | 425 | [ |
38 | Ce?BTC250 after catalytic reaction | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 260 | 340 | [ |
39 | Ce?UiO?66(0.01?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 89 | 128 | [ |
40 | Ce?UiO?66(0.04?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 78 | 112 | [ |
41 | Ce?UiO?66(0.08?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 84 | 122 | [ |
42 | 0.5% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 225 | 255 | [ |
43 | 1.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 200 | ND | [ |
44 | 2.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 185 | ND | [ |
45 | 5.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 175 | 210 | [ |
46 | 1.5% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 175 | ND | [ |
47 | 2.8% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 165 | ND | [ |
48 | 4.0% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 155 | ND | [ |
49 | Au/MIL?101(573) | Au NPs | CO/O2/He, 1/20/79 | 20000 | ND | -120 | [ |
50 | 5.0% Pt@MIL?101 | Pt NPs | CO/O2/He, 1/20/79 | 20000 | ND | 150 | [ |
51 | Pt/N?UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 100 | 120 | [ |
52 | Pt/UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 130 | 140 | [ |
53 | Pt/NH2?UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 145 | 150 | [ |
54 | 2.7% Pd/MIL?53(Al) | Pd NPs | CO/O2/Ar, 1/21/78 | 30000 | 100 | 115 | [ |
55 | 5% Pd/Ce?MOF | Pd NPs | CO/O2/He, 4/20/76 | 240000 | 77 | 92 | [ |
56 | 1% Pd/Cu3(BTC)2?P | PdO2 NPs | CO/O2/He, 1/20/79 | 24000 | ND | 220 | [ |
57 | 2.9% Pd@MIL?101 | Pd NPs | CO/O2/He, 4/20/76 | 120000 | 97 | 147 | [ |
58 | 4.9% Pd@MIL?101 | Pd NPs | CO/O2/He, 4/20/76 | 120000 | 92 | 407 | [ |
59 | Ce?HKUST?1 | CuO?CeO2 | CO/O2/He, 1/20/79 | 109800 | 124 | 170 | [ |
60 | 0.5% Pd + 2%Cu?MIL?10 | PdCu NPs | CO/O2/He, 4/20/76 | 120000 | 175 | 180 | [ |
61 | 1% Pd + 2%Cu?MIL?101 | PdCu NPs | CO/O2/He, 4/20/76 | 120000 | 146 | 152 | [ |
62 | ZIF?67(Pt@Co3O4) | Pt NPs and Co3O4 | CO/O2 /He, 1.5/30/60 | 109800 | ND | 110 | [ |
63 | ZIF?67(Co3O4) | Pt NPs and Co3O4 | CO/O2 /He, 1.5/30/60 | 109800 | ND | 145 | [ |
64 | Cu3(BTC)2(5%?CuO/CeO2?600) | CuO/CeO | CO/O2/H2/N2, 2/3.3/50/47.7 | 18000 | ND | 140 | [ |
65 | MIL?100(Fe)(Ag?Fe) | Olatt/Oads | CO/O2/He, 1/20/79 | 18000 | 132 | 160 | [ |
66 | MIL?100(Fe)(Ag?Fe2O3) | ND | CO/O2/He, 1/20/79 | 18000 | 180 | 215 | [ |
67 | MIL?100(Fe)(Ag?PB) | ND | CO/O2/He, 1/20/79 | 18000 | >350 | >350 | [ |
68 | MIL?100(Fe)(Ag?Fe) | ND | CO/O2/He, 1/20/79 | 18000 | 230 | 275 | [ |
69 | Ce?BTC(CeO2/CuO?400) | CeO2/CuO | CO/O2/H2/N2, 1/1.7/50/47.3 | 18000 | ND | 110 | [ |
Fig.2 MNPs@MOF for CO oxidation(A) Schematic representation of synthesis of Au@UIO-66 using a one-step chemical wetting method[39]. Copyright 2013, Royal Society of Chemistry. (B) Schematic representation of synthesis of Pt nanoparticles inside the MIL-101 matrix using double solvents method[41]. Copyright 2012, American Chemical Society.
Fig.3 Metal(oxide)/carbon nanocomposites derived from MOFs[28]Temperature-programmed profiles of the 1%(volume fraction) CO oxidation for the prepared samples annealed at different temperatures. Copyright 2016, Royal Society of Chemistry.
Fig.4 Effects of activation temperature and atmosphere on CO oxidation(A) CO conversion over the CuBTC catalysts activated at 443, 473, 503, 523, and 553 K, respectively. Reaction conditions: 1% CO, 0.5% O2, N2 as balance, GHSV=30000 h?1. Redrawn based on the information and description from Ref.[24]. (B) CO conversion over G-240(G for Ar, H2, O2, and CO reaction gas). Redrawn based on the information and description from Ref.[29].
Fig.5 Impacts of calcination temperature on the formed crystal structureSchematic illustration showing the synthesis of Au/quasi-MIL-101 through controlled deligandation of Au/MIL-101. Redrawn based on the information and description from Ref.[40].
1 | Goldsmith J. R., Cohen S. I., J. Air Pollut. Control Assoc., 1969, 19(9), 704—713 |
2 | Dey S., Dhal G. C., Mohan D., Prasad R., Bull. Chem. React. Eng. Catal., 2017, 12(3), 1—15 |
3 | Lim S. S., Vos T., Flaxman A. D., Danaei, G., Shibuya K., Adair⁃Rohani H., Amann M., Lancet, 2012, 380(9859), 2224—2260 |
4 | Stevens G., Mascarenhas M., Mathers C., Bull. W. H. O., 2009, 87(9), 646 |
5 | Zhang X. B., Ma K. Y., Zhang L. H., Chin. J. Chem. Phys., 2011, 24(1), 97—102 |
6 | Chhatwal G. R., Mehra M. C., Nagahiro T., Environmental Air Pollution and Its Control, Anmol Publications, New Delhi, 1975 |
7 | Jiao L., Wang Y., Jiang H. L., Xu Q., Adv. Mater., 2018, 30(37), 1703663 |
8 | Liu T. T., Liang J., Xu R., Huang Y. B., Cao R., Chem. Commun., 2019, 55(28), 4063—4066 |
9 | Liu T. T., Xu R., Yi J. D., Liang J., Wang X. S., Shi P. C., Huang Y. B., Cao R., ChemCatChem, 2018,10(9), 2036—2040 |
10 | Liang J., Xie Y. Q., Wu Q., Wang X. Y., Liu T. T., Li H. F., Huang Y. B., Cao R., Inorg. Chem., 2018, 57(5), 2584—2593 |
11 | Liang J., Xie Y. Q., Wang X. S., Wang Q., Liu T. T., Huang Y. B., Cao R., Chem. Commun., 2018, 54(4), 342—345 |
12 | Liang J., Chen R. P., Wang X. Y., Liu T. T., Wang X. S., Huang Y. B., Cao R., Chem. Sci., 2017, 8(2), 1570—1575 |
13 | Liu T. T., Liang J., Huang Y. B., Cao R., Chem. Commun., 2016, 52(90), 13288—13291 |
14 | Xu W. L., Thapa K. B., Ju Q., Fang Z. L., Huang W., Coord. Chem. Rev., 2018, 373, 199—232 |
15 | Eddaoudi M., Sava D. F., Eubank J. F., Adil K., Guillerm V., Chem. Soc. Rev., 2015, 44(1), 228—249 |
16 | Cohen S. M., Chem. Rev., 2012, 112(2), 970—1000 |
17 | O’Keeffe M., Chem. Soc. Rev., 2009, 38(5), 1215—1217 |
18 | Chang Z., Yang D. H., Xu J., Hu T. L., Bu X. H., Adv. Mater., 2015, 27(36), 5432—5441 |
19 | Jiao L., Seow J.Y. R., Skinner W. S., Wang Z. U., Jiang H. L., Mater. Today, 2019, 27, 43—68 |
20 | Cui W. G., Zhang G. Y., Hu T. L., Bu X. H., Coord. Chem. Rev., 2019, 387, 79—120 |
21 | Zou R. Q., Sakurai H., Han S., Zhong R. Q., Xu Q., J. Am. Chem. Soc., 2007, 129(27), 8402—8403 |
22 | Zhao Y., Padmanabhan M., Gong Q. H., Tsumori N., Xu Q., Li J., Chem. Commun.(Camb), 2011, 47(22), 6377—6379 |
23 | Su S. Q., Zhang Y. B., Zhu M., Song X. Z., Wang S., Zhao S. N., Song S. Y., Yang X. G., Zhang H. J., Chem. Commun.(Camb), 2012, 48(90), 11118—11120 |
24 | Qiu W., Wang Y., Li C. Q., Zhan Z. C., Zi X. H., Zhang G. Z., Wang R., He H., Chin. J. Catal., 2012, 33(6), 986—992 |
25 | Tu B. B., Pang Q. Q., Xu H. S., Li X. M., Wang Y. L., Ma Z., Weng L. H., Li Q. W., J. Am. Chem. Soc., 2017, 139(23), 7998—8007 |
26 | El⁃Shall M. S., Abdelsayed V., Khder A. E. R. S., Hassan H. M. A., El-Kaderi H. M., Reich T. E., J. Mater. Chem., 2009, 19(41), 7625—7631 |
27 | Zhang S. Y., Liu H., Sun C. C., Liu P. F., Li L. C.,Yang Z. H., Feng X., Huo F. W., Lu X. H., J. Mater. Chem. A, 2015, 3(10), 5294—5298 |
28 | Zhang R. R., Hu L., Bao S. X., Li R., Gao L., Li R., Chen Q. W., J. Mater. Chem. A, 2016, 4(21), 8412—8420 |
29 | Zhang X. L., Zhan Z. B., Li Z., Di L. B., Catal., 2017, 7(12), 106 |
30 | Kim T., Kim D. H., Kim S., Kim Y. D., Bae Y. S., Lee C. Y., Polyhedron, 2015, 90, 18—22 |
31 | Tan H. Y., Wu J. P., Acta Phys. Chim. Sin., 2014, 30(4), 715—722 |
32 | Wang W. X., Li Y. W., Zhang R. J., He D. H., Liu H. L., Liao S. J., Catal. Commun., 2011, 12(10), 875—879 |
33 | Zheng F. C., Yin Z. C., Xu S. H., Zhang Y. G., Mater. Lett., 2016, 182, 214—217 |
34 | Zhang C., Zhang L., Xu G. C., Ma X., Li Y. H., Zhang C. H., Jia D. Z., New J. Chem., 2017, 41(4), 1631—1636 |
35 | Tan H., Liu C., Yan Y., Wu J., J. Wuhan Univ. Technol., Mater. Sci. Ed., 2015, 30(1), 71—75 |
36 | Zhang X. D., Hou F. L., Li H. X., Yang Y., Wang Y. X., Liu N., Yang Y. Q., Microporous Mesoporous Mater., 2018, 259, 211—219 |
37 | Zhu C. L., Ding T., Gao W. X., Ma K., Tian Y., Li X. G., Int. J. Hydrogen Energy, 2017, 42(27), 17457—17465 |
38 | Jiang H. L., Liu B., Akita T., Haruta M., Sakurai H., Xu Q., J. Am. Chem. Soc., 2009, 131(32), 11302—11303 |
39 | Wu R. B., Qian X. K., Zhou K., Liu H., Yadian B., Wei J., Zhu H. W., Huang Y. Z., J. Mater. Chem. A, 2013, 1(45), 14294—14299 |
40 | Tsumori N., Chen L. Y., Wang Q. J., Zhu Q. L., Kitta M., Xu Q., Chem., 2018, 4(4), 845—856 |
41 | Aijaz A., Karkamkar A., Choi Y. J., Tsumori N., Ronnebro E., Autrey T., Shioyama H., Xu Q., J. Am. Chem. Soc., 2012, 134(34), 13926—13929 |
42 | Zhuang G. L., Bai J. Q., Zhou X. Gao Y. F., Huang H. L., Cui H. Q., Zhong X., Zhong C. L., Wang J. G., Eur. J. Inorg. Chem., 2017, 2017(1), 172—178 |
43 | Liang Q., Zhao Z., Liu J., Wei Y. C., Jiang G. Y., Duan A. J., Acta Phys. Chim. Sin., 2014, 30(1), 129—134 |
44 | Lin A., Ibrahim A. A., Arab P., El⁃Kaderi H. M., El⁃Shall M. S., ACS Appl. Mater. Interfaces, 2017, 9(21), 17961—17968 |
45 | Ye J. Y., Liu C. J., Chem. Commun.(Camb), 2011, 47(7), 2167—2169 |
46 | Zamaro J. M., Perez N.C., Miro E. E., Casado C., Seoane B., Tellez C., Coronas J., Chem. Eng. J., 2012, 195, 180—187 |
47 | Ji W. L., Xu Z. L., Liu P.F., Zhang S. Y., Zhou W. Q., Li H. F., Zhang T., Li L. J., Lu X. H., Wu J. S., Zhang W. N., Huo F. W., ACS Appl. Mater. Interfaces, 2017, 9(18), 15394—15398 |
48 | Zhang F., Chen C., Xiao W. M., Zhang N., Catal. Commun., 2012, 26, 25—29 |
49 | Zhang X., Yang Y., Lv X., Wang Y., Cui L., Catal., 2017, 7(12), 382—394 |
50 | Chen C., Wang R., Shen P., Zhao D., Zhang N., Int. J. Hydrogen Energy, 2015, 40(14), 4830—4839 |
51 | Huang T. J., Tsai D. H., Catal. Lett., 2003, 87, 173—178 |
52 | Wu C. D., Zhao M., Adv. Mater., 2017, 29(14), 1605446 |
53 | Xiang S. C., Zhou W., Zhang Z. J., Green M. A., Liu Y., Chen B. L., Angew. Chem. Int. Ed., 2010, 122(27), 4719—4722 |
54 | Park K. S., Ni Z., Cote A. P., Choi J. Y., Huang R. D., Uribe⁃Romo F. J., Chae H. K., O’Keeffe M., Yaghi O. M., Proc. Natl. Acad. Sci., 2006, 103(27), 10186—10191 |
55 | Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P., J. Am. Chem. Soc., 2008, 130(42), 13850—13851 |
56 | Schaate A., Roy P., Godt A., Lippke J., Waltz F., Wiebcke M., Behrens P., Chem. Eur. J., 2011, 17(24), 6643—6651 |
57 | Lu G., Cui C. L., Zhang W. N., Liu Y. Y., Huo F. W., Chem. Asian J., 2013, 8(1), 69—72 |
58 | Ferey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surble S., Margiolaki I., Science, 2005, 309(5743), 2040—2042 |
59 | Noei H., Amirjalayer S., Müller M., Zhang X. N., Schmid R., Muhler M., Fischer R. A., Wang Y. M., ChemCatChem, 2012, 4(6), 755—759 |
[1] | 李玉龙, 谢发婷, 管燕, 刘嘉丽, 张贵群, 姚超, 杨通, 杨云慧, 胡蓉. 基于银离子与DNA相互作用的比率型电化学传感器用于银离子的检测[J]. 高等学校化学学报, 2022, 43(8): 20220202. |
[2] | 丁杨, 王万辉, 包明. 多孔骨架固定分子催化剂催化CO2加氢制备甲酸研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220309. |
[3] | 鲁聪, 李振华, 刘金露, 华佳, 李光华, 施展, 冯守华. 一种新的镧系金属有机骨架材料的合成、 结构及荧光检测性质[J]. 高等学校化学学报, 2022, 43(6): 20220037. |
[4] | 邢珮琪, 陆通, 李光华, 王力彦. 两个镉(II)金属有机骨架的可控合成与结构相关性[J]. 高等学校化学学报, 2022, 43(10): 20220218. |
[5] | 李文, 乔珺一, 刘鑫垚, 刘云凌. 含萘基团的锆金属有机骨架材料对水中硝基芳烃爆炸物的荧光检测性能[J]. 高等学校化学学报, 2022, 43(1): 20210654. |
[6] | 高中楠, 郭丽红, 赵东越, 李新刚. A位缺陷对La-Sr-Co-O钙钛矿结构和催化氧化性能的影响[J]. 高等学校化学学报, 2021, 42(9): 2869. |
[7] | 张仁丽, 王瑶, 遇治权, 孙志超, 王安杰, 刘颖雅. 氟改性UiO-66固载钼基过氧化物催化氧化含硫化合物[J]. 高等学校化学学报, 2021, 42(6): 1914. |
[8] | 赵阳洋, 刘启勇, 陈泊鑫, 赵斌, 周海梅, 李昕欣, 郑丹, 冯飞. 以金属有机骨架材料ZIF-8为固定相的硅基微气相色谱柱[J]. 高等学校化学学报, 2021, 42(6): 1736. |
[9] | 李梅, 夏晓娟, 陈志雄, 杨梦, 李紫滢, 杨通, 孟爽, 杨云慧, 胡蓉. 基于铂纳米颗粒@金属有机骨架纳米模拟酶的无标记电化学赭曲霉毒素适体传感器的构建[J]. 高等学校化学学报, 2021, 42(12): 3615. |
[10] | 陈晓, 申博渊, 熊昊, 魏飞. 电子束敏感材料的原子尺度结构研究[J]. 高等学校化学学报, 2021, 42(1): 133. |
[11] | 姜笑天, 尹琦, 刘天赋, 曹荣. 金属有机骨架薄膜用于小分子和离子的高效分离[J]. 高等学校化学学报, 2020, 41(8): 1691. |
[12] | 谢兴钰, 赵雅香, 赵莉芝, 李日舜, 吴迪昊, 叶卉, 辛清萍, 李泓, 张玉忠. 基于金属卟啉2DMOFs仿酶催化的过氧化氢比色法检测[J]. 高等学校化学学报, 2020, 41(8): 1776. |
[13] | 高霞,潘会宾,乔成芳,陈凤英,周元,杨文华. 基于多级孔金属有机骨架构筑HRP固定化酶反应器及其染料降解应用[J]. 高等学校化学学报, 2020, 41(7): 1591. |
[14] | 金欣, 冯锡岚, 刘大鹏, 苏雨童, 张政, 张瑜. 自发氧化还原法制备Co3O4/CeO2纳米复合材料及其CO催化氧化反应结构优化[J]. 高等学校化学学报, 2020, 41(4): 652. |
[15] | 侯俊英, 郝建军, 王雅雅, 刘敬春. Cu3(BTC)2金属有机骨架复合基质膜的制备及流体催化性能[J]. 高等学校化学学报, 2019, 40(9): 1926. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||