高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (10): 2174-2184.doi: 10.7503/cjcu20200272
王瑞1,2, 黄新松1, 刘天赋1, 曹荣1
收稿日期:
2020-05-20
出版日期:
2020-10-10
发布日期:
2020-10-08
基金资助:
WANG Rui1,2, HUANG Xinsong1, LIU Tian⁃Fu1(), CAO Rong1(
)
Received:
2020-05-20
Online:
2020-10-10
Published:
2020-10-08
Contact:
LIU Tian?Fu,CAO Rong
E-mail:tfliu@fjirsm.ac.cn;rcao@fjirsm.ac.cn
Supported by:
摘要:
鉴于一氧化碳(CO)氧化在基础研究、 环境保护和实际应用中的重要性, 人们对其进行了广泛的研究. 金属有机骨架(MOFs)由于具有永久孔隙, 结构多样且可调控, 是一种很有前途的CO氧化催化剂. 本文对近年来MOFs和MOF基催化剂用于CO氧化的研究进展进行了系统的总结, 并根据催化剂活性物种/位点进行了简要的分类介绍. 除了催化剂的化学结构, 催化剂的负载量、 制备方法和预处理技术以及反应温度等对催化性能的影响也在文中进行了讨论. 最后, 本综述对该研究领域进行了总结和展望.
中图分类号:
王瑞, 黄新松, 刘天赋, 曹荣. 金属有机框架用于一氧化碳氧化[J]. 高等学校化学学报, 2020, 41(10): 2174-2184.
WANG Rui, HUANG Xinsong, LIU Tian⁃Fu, CAO Rong. Metal-organic Frameworks for CO Oxidation[J]. Chemical Journal of Chinese Universities, 2020, 41(10): 2174-2184.
Entry | Catalyst | Active species | Feed gas and volume ratio | GHSVa/ (mL·h?1·g?1) | T50b/℃ | T100c/℃ | Ref. |
---|---|---|---|---|---|---|---|
1 | [Cu(mipt)(H2O)](H2O)2 | Cu(II) | CO/O2/He, 1/20/79 | 20000 | NDd | 200 | [ |
2 | [Cu5(OH)2(nip)4(H2O)6](H2O)4.25 | Cu(II) | CO/O2/He, 1/20/79 | 20000 | 155 | 200 | [ |
3 | Cu3(OH)(C4H2N2O2)3 | Cu(II) | CO/O2/Ar, 1/6/93 | 30000 | ND | 230 | [ |
4 | CuBTC?443 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 240 | [ |
5 | CuBTC?503 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 200 | [ |
6 | CuBTC?523 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 170 | [ |
7 | CuBTC?553 | Cu(II) | CO/O2/N2, 1/0.5/78 | 30000 | ND | 290 | [ |
8 | FDM?3 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 200 | 220 | [ |
9 | FDM?4 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 180 | 210 | [ |
10 | FDM?5 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 215 | ND | [ |
11 | FDM?6 | Cu(I) | CO/O2/N2, 1/24/78 | 30000 | 195 | 220 | [ |
12 | FDM?7 | Cu(I) | CO/O2/N2, 1/24/78 | 30000 | 190 | 220 | [ |
13 | 2% Cu?MIL?101 | Cu NPs | CO/O2/He, 4/20/76 | 120000 | 275 | 289 | [ |
14 | Cu?BTC(C?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | ND | [ |
15 | Cu?BTC(R?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | 240 | [ |
16 | Cu?BTC(O?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | 260 | [ |
17 | Cu?BTC(W?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | ND | [ |
Entry | Catalyst | Active species | Feed gas and volume ratio | GHSVa/ (mL·h?1·g?1) | T50b/℃ | T100c/℃ | Ref. |
18 | Cu?BTC(S?350) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 190 | [ |
19 | Cu?BTC(S?400) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 190 | [ |
20 | Cu?BTC(S?500) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 155 | [ |
21 | Cu?BTC(S?600) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 185 | [ |
22 | Cu?BTC(S?700) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 170 | [ |
23 | Cu?BTC(CO?240) | Cu2O | CO/O2/N2, 1/20/79 | 24000 | 110 | 145 | [ |
24 | Cu?BTC(Ar?240) | ND | CO/O2/N2, 1/20/79 | 24000 | 237 | 255 | [ |
25 | Cu?BTC(O2?240) | CuO | CO/O2/N2, 1/20/79 | 24000 | 144 | 170 | [ |
26 | Cu?BTC(H2?240) | ND | CO/O2/N2, 1/20/79 | 24000 | 245 | 255 | [ |
27 | CoMOF?74 | Co(II) | CO/Air, 1/99 | 18000 | 84 | ND | [ |
28 | 20% Co/MIL?53(Al) | Co NPs | CO/Air, 3/97 | 52000 | ND | 180 | [ |
29 | ZIF?67(Co3O4?Ther) | Co3O4 | CO/O2/He, 1/20/79 | 30000 | 92 | ND | [ |
30 | ZIF?8(Co3O4?MOF) | Co3O4 | CO/O2/He, 1/20/79 | 30000 | 58 | 80 | [ |
31 | ZIF?67(Co3O4) | Co3O4 | CO/Air, 1/99 | 36000 | ND | 120 | [ |
32 | [Amine][Co(HCOO)3] (Co3O4?MA) | OV, OC and Co3+ sites | CO/O2 /He, 1/20/79 | 60000 | 160 | 170 | [ |
33 | [Amine][Co(HCOO)3] (Co3O4?DMA) | OV, OC and Co3+ sites | CO/O2 /He, 1/20/79 | 60000 | 157 | 170 | [ |
34 | Co3(BTC)2 | Co NPs | CO/Air, 1/99 | 48000 | ND | 160 | [ |
35 | Ce?BTC200 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 280 | 375 | [ |
36 | Ce?BTC250 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 240 | 340 | [ |
37 | Ce?BTC300 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 330 | 425 | [ |
38 | Ce?BTC250 after catalytic reaction | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 260 | 340 | [ |
39 | Ce?UiO?66(0.01?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 89 | 128 | [ |
40 | Ce?UiO?66(0.04?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 78 | 112 | [ |
41 | Ce?UiO?66(0.08?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 84 | 122 | [ |
42 | 0.5% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 225 | 255 | [ |
43 | 1.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 200 | ND | [ |
44 | 2.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 185 | ND | [ |
45 | 5.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 175 | 210 | [ |
46 | 1.5% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 175 | ND | [ |
47 | 2.8% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 165 | ND | [ |
48 | 4.0% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 155 | ND | [ |
49 | Au/MIL?101(573) | Au NPs | CO/O2/He, 1/20/79 | 20000 | ND | -120 | [ |
50 | 5.0% Pt@MIL?101 | Pt NPs | CO/O2/He, 1/20/79 | 20000 | ND | 150 | [ |
51 | Pt/N?UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 100 | 120 | [ |
52 | Pt/UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 130 | 140 | [ |
53 | Pt/NH2?UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 145 | 150 | [ |
54 | 2.7% Pd/MIL?53(Al) | Pd NPs | CO/O2/Ar, 1/21/78 | 30000 | 100 | 115 | [ |
55 | 5% Pd/Ce?MOF | Pd NPs | CO/O2/He, 4/20/76 | 240000 | 77 | 92 | [ |
56 | 1% Pd/Cu3(BTC)2?P | PdO2 NPs | CO/O2/He, 1/20/79 | 24000 | ND | 220 | [ |
57 | 2.9% Pd@MIL?101 | Pd NPs | CO/O2/He, 4/20/76 | 120000 | 97 | 147 | [ |
58 | 4.9% Pd@MIL?101 | Pd NPs | CO/O2/He, 4/20/76 | 120000 | 92 | 407 | [ |
59 | Ce?HKUST?1 | CuO?CeO2 | CO/O2/He, 1/20/79 | 109800 | 124 | 170 | [ |
60 | 0.5% Pd + 2%Cu?MIL?10 | PdCu NPs | CO/O2/He, 4/20/76 | 120000 | 175 | 180 | [ |
61 | 1% Pd + 2%Cu?MIL?101 | PdCu NPs | CO/O2/He, 4/20/76 | 120000 | 146 | 152 | [ |
62 | ZIF?67(Pt@Co3O4) | Pt NPs and Co3O4 | CO/O2 /He, 1.5/30/60 | 109800 | ND | 110 | [ |
63 | ZIF?67(Co3O4) | Pt NPs and Co3O4 | CO/O2 /He, 1.5/30/60 | 109800 | ND | 145 | [ |
64 | Cu3(BTC)2(5%?CuO/CeO2?600) | CuO/CeO | CO/O2/H2/N2, 2/3.3/50/47.7 | 18000 | ND | 140 | [ |
65 | MIL?100(Fe)(Ag?Fe) | Olatt/Oads | CO/O2/He, 1/20/79 | 18000 | 132 | 160 | [ |
66 | MIL?100(Fe)(Ag?Fe2O3) | ND | CO/O2/He, 1/20/79 | 18000 | 180 | 215 | [ |
67 | MIL?100(Fe)(Ag?PB) | ND | CO/O2/He, 1/20/79 | 18000 | >350 | >350 | [ |
68 | MIL?100(Fe)(Ag?Fe) | ND | CO/O2/He, 1/20/79 | 18000 | 230 | 275 | [ |
69 | Ce?BTC(CeO2/CuO?400) | CeO2/CuO | CO/O2/H2/N2, 1/1.7/50/47.3 | 18000 | ND | 110 | [ |
Table 1 Summary of MOFs and MOF-based catalysts(classified by elements) for CO oxidation
Entry | Catalyst | Active species | Feed gas and volume ratio | GHSVa/ (mL·h?1·g?1) | T50b/℃ | T100c/℃ | Ref. |
---|---|---|---|---|---|---|---|
1 | [Cu(mipt)(H2O)](H2O)2 | Cu(II) | CO/O2/He, 1/20/79 | 20000 | NDd | 200 | [ |
2 | [Cu5(OH)2(nip)4(H2O)6](H2O)4.25 | Cu(II) | CO/O2/He, 1/20/79 | 20000 | 155 | 200 | [ |
3 | Cu3(OH)(C4H2N2O2)3 | Cu(II) | CO/O2/Ar, 1/6/93 | 30000 | ND | 230 | [ |
4 | CuBTC?443 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 240 | [ |
5 | CuBTC?503 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 200 | [ |
6 | CuBTC?523 | Cu(II) | CO/O2/N2, 1/0.5/98.5 | 30000 | ND | 170 | [ |
7 | CuBTC?553 | Cu(II) | CO/O2/N2, 1/0.5/78 | 30000 | ND | 290 | [ |
8 | FDM?3 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 200 | 220 | [ |
9 | FDM?4 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 180 | 210 | [ |
10 | FDM?5 | Cu(I) | CO/O2/N2, 1/21/78 | 30000 | 215 | ND | [ |
11 | FDM?6 | Cu(I) | CO/O2/N2, 1/24/78 | 30000 | 195 | 220 | [ |
12 | FDM?7 | Cu(I) | CO/O2/N2, 1/24/78 | 30000 | 190 | 220 | [ |
13 | 2% Cu?MIL?101 | Cu NPs | CO/O2/He, 4/20/76 | 120000 | 275 | 289 | [ |
14 | Cu?BTC(C?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | ND | [ |
15 | Cu?BTC(R?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | 240 | [ |
16 | Cu?BTC(O?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | 260 | [ |
17 | Cu?BTC(W?CuO/Cu2O) | CuO/Cu2O | CO/O2/He, 5/30/100 | 13500 | ND | ND | [ |
Entry | Catalyst | Active species | Feed gas and volume ratio | GHSVa/ (mL·h?1·g?1) | T50b/℃ | T100c/℃ | Ref. |
18 | Cu?BTC(S?350) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 190 | [ |
19 | Cu?BTC(S?400) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 190 | [ |
20 | Cu?BTC(S?500) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 155 | [ |
21 | Cu?BTC(S?600) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 185 | [ |
22 | Cu?BTC(S?700) | Cu/Cu2O and Cu/CuO interface | CO/Air, 1/99 | 36000 | ND | 170 | [ |
23 | Cu?BTC(CO?240) | Cu2O | CO/O2/N2, 1/20/79 | 24000 | 110 | 145 | [ |
24 | Cu?BTC(Ar?240) | ND | CO/O2/N2, 1/20/79 | 24000 | 237 | 255 | [ |
25 | Cu?BTC(O2?240) | CuO | CO/O2/N2, 1/20/79 | 24000 | 144 | 170 | [ |
26 | Cu?BTC(H2?240) | ND | CO/O2/N2, 1/20/79 | 24000 | 245 | 255 | [ |
27 | CoMOF?74 | Co(II) | CO/Air, 1/99 | 18000 | 84 | ND | [ |
28 | 20% Co/MIL?53(Al) | Co NPs | CO/Air, 3/97 | 52000 | ND | 180 | [ |
29 | ZIF?67(Co3O4?Ther) | Co3O4 | CO/O2/He, 1/20/79 | 30000 | 92 | ND | [ |
30 | ZIF?8(Co3O4?MOF) | Co3O4 | CO/O2/He, 1/20/79 | 30000 | 58 | 80 | [ |
31 | ZIF?67(Co3O4) | Co3O4 | CO/Air, 1/99 | 36000 | ND | 120 | [ |
32 | [Amine][Co(HCOO)3] (Co3O4?MA) | OV, OC and Co3+ sites | CO/O2 /He, 1/20/79 | 60000 | 160 | 170 | [ |
33 | [Amine][Co(HCOO)3] (Co3O4?DMA) | OV, OC and Co3+ sites | CO/O2 /He, 1/20/79 | 60000 | 157 | 170 | [ |
34 | Co3(BTC)2 | Co NPs | CO/Air, 1/99 | 48000 | ND | 160 | [ |
35 | Ce?BTC200 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 280 | 375 | [ |
36 | Ce?BTC250 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 240 | 340 | [ |
37 | Ce?BTC300 | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 330 | 425 | [ |
38 | Ce?BTC250 after catalytic reaction | Ce3+ and O vacancies | CO/O2/He, 1/20/79 | 60000 | 260 | 340 | [ |
39 | Ce?UiO?66(0.01?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 89 | 128 | [ |
40 | Ce?UiO?66(0.04?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 78 | 112 | [ |
41 | Ce?UiO?66(0.08?CuCe) | Ce and O vacancies | CO/O2/H2/N2, 1/1/50/48 | 12000 | 84 | 122 | [ |
42 | 0.5% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 225 | 255 | [ |
43 | 1.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 200 | ND | [ |
44 | 2.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 185 | ND | [ |
45 | 5.0% Au@ZIF?8 | Au NPs | CO/O2/He, 1/20/79 | 60000 | 175 | 210 | [ |
46 | 1.5% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 175 | ND | [ |
47 | 2.8% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 165 | ND | [ |
48 | 4.0% Au@UiO?66 | Au NPs | CO/O2/He, 1/20/79 | 15000 | 155 | ND | [ |
49 | Au/MIL?101(573) | Au NPs | CO/O2/He, 1/20/79 | 20000 | ND | -120 | [ |
50 | 5.0% Pt@MIL?101 | Pt NPs | CO/O2/He, 1/20/79 | 20000 | ND | 150 | [ |
51 | Pt/N?UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 100 | 120 | [ |
52 | Pt/UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 130 | 140 | [ |
53 | Pt/NH2?UiO?67 | Pt NPs | CO/O2/He, 1/20/79 | 120000 | 145 | 150 | [ |
54 | 2.7% Pd/MIL?53(Al) | Pd NPs | CO/O2/Ar, 1/21/78 | 30000 | 100 | 115 | [ |
55 | 5% Pd/Ce?MOF | Pd NPs | CO/O2/He, 4/20/76 | 240000 | 77 | 92 | [ |
56 | 1% Pd/Cu3(BTC)2?P | PdO2 NPs | CO/O2/He, 1/20/79 | 24000 | ND | 220 | [ |
57 | 2.9% Pd@MIL?101 | Pd NPs | CO/O2/He, 4/20/76 | 120000 | 97 | 147 | [ |
58 | 4.9% Pd@MIL?101 | Pd NPs | CO/O2/He, 4/20/76 | 120000 | 92 | 407 | [ |
59 | Ce?HKUST?1 | CuO?CeO2 | CO/O2/He, 1/20/79 | 109800 | 124 | 170 | [ |
60 | 0.5% Pd + 2%Cu?MIL?10 | PdCu NPs | CO/O2/He, 4/20/76 | 120000 | 175 | 180 | [ |
61 | 1% Pd + 2%Cu?MIL?101 | PdCu NPs | CO/O2/He, 4/20/76 | 120000 | 146 | 152 | [ |
62 | ZIF?67(Pt@Co3O4) | Pt NPs and Co3O4 | CO/O2 /He, 1.5/30/60 | 109800 | ND | 110 | [ |
63 | ZIF?67(Co3O4) | Pt NPs and Co3O4 | CO/O2 /He, 1.5/30/60 | 109800 | ND | 145 | [ |
64 | Cu3(BTC)2(5%?CuO/CeO2?600) | CuO/CeO | CO/O2/H2/N2, 2/3.3/50/47.7 | 18000 | ND | 140 | [ |
65 | MIL?100(Fe)(Ag?Fe) | Olatt/Oads | CO/O2/He, 1/20/79 | 18000 | 132 | 160 | [ |
66 | MIL?100(Fe)(Ag?Fe2O3) | ND | CO/O2/He, 1/20/79 | 18000 | 180 | 215 | [ |
67 | MIL?100(Fe)(Ag?PB) | ND | CO/O2/He, 1/20/79 | 18000 | >350 | >350 | [ |
68 | MIL?100(Fe)(Ag?Fe) | ND | CO/O2/He, 1/20/79 | 18000 | 230 | 275 | [ |
69 | Ce?BTC(CeO2/CuO?400) | CeO2/CuO | CO/O2/H2/N2, 1/1.7/50/47.3 | 18000 | ND | 110 | [ |
Fig.2 MNPs@MOF for CO oxidation(A) Schematic representation of synthesis of Au@UIO-66 using a one-step chemical wetting method[39]. Copyright 2013, Royal Society of Chemistry. (B) Schematic representation of synthesis of Pt nanoparticles inside the MIL-101 matrix using double solvents method[41]. Copyright 2012, American Chemical Society.
Fig.3 Metal(oxide)/carbon nanocomposites derived from MOFs[28]Temperature-programmed profiles of the 1%(volume fraction) CO oxidation for the prepared samples annealed at different temperatures. Copyright 2016, Royal Society of Chemistry.
Fig.4 Effects of activation temperature and atmosphere on CO oxidation(A) CO conversion over the CuBTC catalysts activated at 443, 473, 503, 523, and 553 K, respectively. Reaction conditions: 1% CO, 0.5% O2, N2 as balance, GHSV=30000 h?1. Redrawn based on the information and description from Ref.[24]. (B) CO conversion over G-240(G for Ar, H2, O2, and CO reaction gas). Redrawn based on the information and description from Ref.[29].
Fig.5 Impacts of calcination temperature on the formed crystal structureSchematic illustration showing the synthesis of Au/quasi-MIL-101 through controlled deligandation of Au/MIL-101. Redrawn based on the information and description from Ref.[40].
1 | Goldsmith J. R., Cohen S. I., J. Air Pollut. Control Assoc., 1969, 19(9), 704—713 |
2 | Dey S., Dhal G. C., Mohan D., Prasad R., Bull. Chem. React. Eng. Catal., 2017, 12(3), 1—15 |
3 | Lim S. S., Vos T., Flaxman A. D., Danaei, G., Shibuya K., Adair⁃Rohani H., Amann M., Lancet, 2012, 380(9859), 2224—2260 |
4 | Stevens G., Mascarenhas M., Mathers C., Bull. W. H. O., 2009, 87(9), 646 |
5 | Zhang X. B., Ma K. Y., Zhang L. H., Chin. J. Chem. Phys., 2011, 24(1), 97—102 |
6 | Chhatwal G. R., Mehra M. C., Nagahiro T., Environmental Air Pollution and Its Control, Anmol Publications, New Delhi, 1975 |
7 | Jiao L., Wang Y., Jiang H. L., Xu Q., Adv. Mater., 2018, 30(37), 1703663 |
8 | Liu T. T., Liang J., Xu R., Huang Y. B., Cao R., Chem. Commun., 2019, 55(28), 4063—4066 |
9 | Liu T. T., Xu R., Yi J. D., Liang J., Wang X. S., Shi P. C., Huang Y. B., Cao R., ChemCatChem, 2018,10(9), 2036—2040 |
10 | Liang J., Xie Y. Q., Wu Q., Wang X. Y., Liu T. T., Li H. F., Huang Y. B., Cao R., Inorg. Chem., 2018, 57(5), 2584—2593 |
11 | Liang J., Xie Y. Q., Wang X. S., Wang Q., Liu T. T., Huang Y. B., Cao R., Chem. Commun., 2018, 54(4), 342—345 |
12 | Liang J., Chen R. P., Wang X. Y., Liu T. T., Wang X. S., Huang Y. B., Cao R., Chem. Sci., 2017, 8(2), 1570—1575 |
13 | Liu T. T., Liang J., Huang Y. B., Cao R., Chem. Commun., 2016, 52(90), 13288—13291 |
14 | Xu W. L., Thapa K. B., Ju Q., Fang Z. L., Huang W., Coord. Chem. Rev., 2018, 373, 199—232 |
15 | Eddaoudi M., Sava D. F., Eubank J. F., Adil K., Guillerm V., Chem. Soc. Rev., 2015, 44(1), 228—249 |
16 | Cohen S. M., Chem. Rev., 2012, 112(2), 970—1000 |
17 | O’Keeffe M., Chem. Soc. Rev., 2009, 38(5), 1215—1217 |
18 | Chang Z., Yang D. H., Xu J., Hu T. L., Bu X. H., Adv. Mater., 2015, 27(36), 5432—5441 |
19 | Jiao L., Seow J.Y. R., Skinner W. S., Wang Z. U., Jiang H. L., Mater. Today, 2019, 27, 43—68 |
20 | Cui W. G., Zhang G. Y., Hu T. L., Bu X. H., Coord. Chem. Rev., 2019, 387, 79—120 |
21 | Zou R. Q., Sakurai H., Han S., Zhong R. Q., Xu Q., J. Am. Chem. Soc., 2007, 129(27), 8402—8403 |
22 | Zhao Y., Padmanabhan M., Gong Q. H., Tsumori N., Xu Q., Li J., Chem. Commun.(Camb), 2011, 47(22), 6377—6379 |
23 | Su S. Q., Zhang Y. B., Zhu M., Song X. Z., Wang S., Zhao S. N., Song S. Y., Yang X. G., Zhang H. J., Chem. Commun.(Camb), 2012, 48(90), 11118—11120 |
24 | Qiu W., Wang Y., Li C. Q., Zhan Z. C., Zi X. H., Zhang G. Z., Wang R., He H., Chin. J. Catal., 2012, 33(6), 986—992 |
25 | Tu B. B., Pang Q. Q., Xu H. S., Li X. M., Wang Y. L., Ma Z., Weng L. H., Li Q. W., J. Am. Chem. Soc., 2017, 139(23), 7998—8007 |
26 | El⁃Shall M. S., Abdelsayed V., Khder A. E. R. S., Hassan H. M. A., El-Kaderi H. M., Reich T. E., J. Mater. Chem., 2009, 19(41), 7625—7631 |
27 | Zhang S. Y., Liu H., Sun C. C., Liu P. F., Li L. C.,Yang Z. H., Feng X., Huo F. W., Lu X. H., J. Mater. Chem. A, 2015, 3(10), 5294—5298 |
28 | Zhang R. R., Hu L., Bao S. X., Li R., Gao L., Li R., Chen Q. W., J. Mater. Chem. A, 2016, 4(21), 8412—8420 |
29 | Zhang X. L., Zhan Z. B., Li Z., Di L. B., Catal., 2017, 7(12), 106 |
30 | Kim T., Kim D. H., Kim S., Kim Y. D., Bae Y. S., Lee C. Y., Polyhedron, 2015, 90, 18—22 |
31 | Tan H. Y., Wu J. P., Acta Phys. Chim. Sin., 2014, 30(4), 715—722 |
32 | Wang W. X., Li Y. W., Zhang R. J., He D. H., Liu H. L., Liao S. J., Catal. Commun., 2011, 12(10), 875—879 |
33 | Zheng F. C., Yin Z. C., Xu S. H., Zhang Y. G., Mater. Lett., 2016, 182, 214—217 |
34 | Zhang C., Zhang L., Xu G. C., Ma X., Li Y. H., Zhang C. H., Jia D. Z., New J. Chem., 2017, 41(4), 1631—1636 |
35 | Tan H., Liu C., Yan Y., Wu J., J. Wuhan Univ. Technol., Mater. Sci. Ed., 2015, 30(1), 71—75 |
36 | Zhang X. D., Hou F. L., Li H. X., Yang Y., Wang Y. X., Liu N., Yang Y. Q., Microporous Mesoporous Mater., 2018, 259, 211—219 |
37 | Zhu C. L., Ding T., Gao W. X., Ma K., Tian Y., Li X. G., Int. J. Hydrogen Energy, 2017, 42(27), 17457—17465 |
38 | Jiang H. L., Liu B., Akita T., Haruta M., Sakurai H., Xu Q., J. Am. Chem. Soc., 2009, 131(32), 11302—11303 |
39 | Wu R. B., Qian X. K., Zhou K., Liu H., Yadian B., Wei J., Zhu H. W., Huang Y. Z., J. Mater. Chem. A, 2013, 1(45), 14294—14299 |
40 | Tsumori N., Chen L. Y., Wang Q. J., Zhu Q. L., Kitta M., Xu Q., Chem., 2018, 4(4), 845—856 |
41 | Aijaz A., Karkamkar A., Choi Y. J., Tsumori N., Ronnebro E., Autrey T., Shioyama H., Xu Q., J. Am. Chem. Soc., 2012, 134(34), 13926—13929 |
42 | Zhuang G. L., Bai J. Q., Zhou X. Gao Y. F., Huang H. L., Cui H. Q., Zhong X., Zhong C. L., Wang J. G., Eur. J. Inorg. Chem., 2017, 2017(1), 172—178 |
43 | Liang Q., Zhao Z., Liu J., Wei Y. C., Jiang G. Y., Duan A. J., Acta Phys. Chim. Sin., 2014, 30(1), 129—134 |
44 | Lin A., Ibrahim A. A., Arab P., El⁃Kaderi H. M., El⁃Shall M. S., ACS Appl. Mater. Interfaces, 2017, 9(21), 17961—17968 |
45 | Ye J. Y., Liu C. J., Chem. Commun.(Camb), 2011, 47(7), 2167—2169 |
46 | Zamaro J. M., Perez N.C., Miro E. E., Casado C., Seoane B., Tellez C., Coronas J., Chem. Eng. J., 2012, 195, 180—187 |
47 | Ji W. L., Xu Z. L., Liu P.F., Zhang S. Y., Zhou W. Q., Li H. F., Zhang T., Li L. J., Lu X. H., Wu J. S., Zhang W. N., Huo F. W., ACS Appl. Mater. Interfaces, 2017, 9(18), 15394—15398 |
48 | Zhang F., Chen C., Xiao W. M., Zhang N., Catal. Commun., 2012, 26, 25—29 |
49 | Zhang X., Yang Y., Lv X., Wang Y., Cui L., Catal., 2017, 7(12), 382—394 |
50 | Chen C., Wang R., Shen P., Zhao D., Zhang N., Int. J. Hydrogen Energy, 2015, 40(14), 4830—4839 |
51 | Huang T. J., Tsai D. H., Catal. Lett., 2003, 87, 173—178 |
52 | Wu C. D., Zhao M., Adv. Mater., 2017, 29(14), 1605446 |
53 | Xiang S. C., Zhou W., Zhang Z. J., Green M. A., Liu Y., Chen B. L., Angew. Chem. Int. Ed., 2010, 122(27), 4719—4722 |
54 | Park K. S., Ni Z., Cote A. P., Choi J. Y., Huang R. D., Uribe⁃Romo F. J., Chae H. K., O’Keeffe M., Yaghi O. M., Proc. Natl. Acad. Sci., 2006, 103(27), 10186—10191 |
55 | Cavka J. H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., Lillerud K. P., J. Am. Chem. Soc., 2008, 130(42), 13850—13851 |
56 | Schaate A., Roy P., Godt A., Lippke J., Waltz F., Wiebcke M., Behrens P., Chem. Eur. J., 2011, 17(24), 6643—6651 |
57 | Lu G., Cui C. L., Zhang W. N., Liu Y. Y., Huo F. W., Chem. Asian J., 2013, 8(1), 69—72 |
58 | Ferey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surble S., Margiolaki I., Science, 2005, 309(5743), 2040—2042 |
59 | Noei H., Amirjalayer S., Müller M., Zhang X. N., Schmid R., Muhler M., Fischer R. A., Wang Y. M., ChemCatChem, 2012, 4(6), 755—759 |
[1] | 姜笑天, 尹琦, 刘天赋, 曹荣. 金属有机骨架薄膜用于小分子和离子的高效分离[J]. 高等学校化学学报, 2020, 41(8): 1691-1707. |
[2] | 谢兴钰, 赵雅香, 赵莉芝, 李日舜, 吴迪昊, 叶卉, 辛清萍, 李泓, 张玉忠. 基于金属卟啉2DMOFs仿酶催化的过氧化氢比色法检测[J]. 高等学校化学学报, 2020, 41(8): 1776-1784. |
[3] | 高霞,潘会宾,乔成芳,陈凤英,周元,杨文华. 基于多级孔金属有机骨架构筑HRP固定化酶反应器及其染料降解应用[J]. 高等学校化学学报, 2020, 41(7): 1591-1599. |
[4] | 金欣, 冯锡岚, 刘大鹏, 苏雨童, 张政, 张瑜. 自发氧化还原法制备Co3O4/CeO2纳米复合材料及其CO催化氧化反应结构优化[J]. 高等学校化学学报, 2020, 41(4): 652-660. |
[5] | 侯俊英, 郝建军, 王雅雅, 刘敬春. Cu3(BTC)2金属有机骨架复合基质膜的制备及流体催化性能[J]. 高等学校化学学报, 2019, 40(9): 1926-1931. |
[6] | 王鹏程, 单梁, 范勇, 王莉, 徐家宁, 吴淑杰. MIL-53系列金属有机骨架化合物的合成及在Strecker反应中的催化性能[J]. 高等学校化学学报, 2019, 40(8): 1655-1661. |
[7] | 李湛, 单晓雯, 杨平平, 高壮壮, 方千荣, 薛铭, 裘式纶. 新型金属有机气凝胶的合成、 表征及气体吸附性能[J]. 高等学校化学学报, 2019, 40(6): 1116-1120. |
[8] | 钱文浩, 黄玮, 丛玉凤, 李富盛. UiO-67-Sal-CuCl2在空气中催化芳香醇的选择性氧化[J]. 高等学校化学学报, 2019, 40(6): 1178-1183. |
[9] | 景润, 鲁新环, 张海福, 陶佩佩, 潘海军, 胡傲, 周丹, 夏清华. MIL-101(Fe)高效催化β-蒎烯与甲醛的Prins缩合制备诺卜醇[J]. 高等学校化学学报, 2019, 40(4): 755-762. |
[10] | 李德蕾, 谷梦巧, 王敏, 迟宽能, 张茜, 邓燕, 马玉婵, 胡蓉, 杨云慧. 基于金属-有机骨架Fe-MIL-88NH2的凝血酶适体传感器[J]. 高等学校化学学报, 2019, 40(3): 439-447. |
[11] | 石宝珍,李杉,王佃鹏,周云志,孙锦玉. Co(Ⅱ)-Zn(Ⅱ)掺杂配位聚合物的合成及物理性能[J]. 高等学校化学学报, 2019, 40(12): 2443-2447. |
[12] | 刘敬华, 丁彤, 田野, 李新刚. 钾促进的Pt/TiO2催化一氧化碳氧化[J]. 高等学校化学学报, 2018, 39(7): 1467-1474. |
[13] | 赵长江, 刘欣, 田利, 赵仑. 具有穿插结构的金属钴配合物的合成、 结构及电化学性质[J]. 高等学校化学学报, 2018, 39(5): 861-868. |
[14] | 徐丹, 肖珊珊, 吴攀, 潘莹, 陈丽华, 苏宝连, 薛铭, 裘式纶. 基于有机磷酸类MOFs前驱体制备Ni2P/C复合材料[J]. 高等学校化学学报, 2018, 39(1): 19-24. |
[15] | 龚文朋, 田超强, 杜晓刚, 杨水金. H6P2Mo18O62/Zn(BDC)(Bipy)0.5复合材料的合成、 表征及对亚甲基蓝的吸附[J]. 高等学校化学学报, 2016, 37(9): 1596-1604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||