高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6): 20240070.doi: 10.7503/cjcu20240070
收稿日期:
2024-02-05
出版日期:
2025-06-10
发布日期:
2024-03-22
通讯作者:
曲松楠
E-mail:songnanqu@um.edu.mo
基金资助:
LIU Yupeng1, YANG Junxiang2, HAO Yiming2, QU Songnan1,2()
Received:
2024-02-05
Online:
2025-06-10
Published:
2024-03-22
Contact:
QU Songnan
E-mail:songnanqu@um.edu.mo
Supported by:
摘要:
碳点是一类新兴的零维碳纳米光学材料, 在众多领域备受关注. 近红外光相比于可见光具有更深的组织穿透能力和更低的散射, 在生物成像等领域优势明显. 随着科研人员的探索, 碳点发光带隙的调控从最初的蓝紫光向长波长不断红移. 近年来, 近红外波段吸收/发光的碳点也相继被报道. 本文以本课题组在近红外碳点领域的一系列工作为基础, 总结评述了近红外碳点的制备策略及多方面应用的最新进展, 并对未来的发展方向进行了展望.
中图分类号:
TrendMD:
刘钰鹏, 杨钧翔, 郝一鸣, 曲松楠. 近红外吸收/发光碳点的研究进展. 高等学校化学学报, 2025, 46(6): 20240070.
LIU Yupeng, YANG Junxiang, HAO Yiming, QU Songnan. Recent Advances in Carbon Dots with Near-infrared Absorption/Emission. Chem. J. Chinese Universities, 2025, 46(6): 20240070.
Fig.1 Classification and synthesis methods of carbon dots(A) Classification of carbon dots[5]; (B) “top-down” and “bottom-up” preparation methods of carbon dots[4,7].(A) Copyright 2019, the Authors; (B) Copyright 2021, John Wiley and Sons; Copyright 2020, American Chemical Society.
Fig.2 Calculated emission wavelength(nm) using TDDFT method in vacuum as a function of the diameter of GQDs(A)[38], synthesis of multicolor fluorescent CDs based on differences in solvent protonity(B)[14], synthesis of multicolor fluorescent CDs using solvent engineering strategies(C)[17], using large conjugated molecules as raw materials to synthesize near⁃infrared carbon dots(D) and their band gap theoretical calculations(E)[36](A) Copyright 2014, the Royal Society of Chemistry; (B) Copyright 2017, John Wiley and Sons; (C) Copyright 2018, John Wiley and Sons; (D, E) Copyright 2022, the Authors.
Fig.3 Schematic diagram of the synthesis of N,S⁃co⁃doped carbon dots(A) and absorption and near⁃infrared emission spectra(B)[46], schematic diagram of the preparation and application of Fe⁃doped carbon dots(C)[50](A, B) Copyright 2020, John Wiley and Sons; (C) Copyright 2023, the Authors.
Fig.4 Schematic diagram of the one⁃pot synthesis and purification of multicolor carbon dots(A) and the relationship between their surface oxidation degree and band gap(B)[16], absorption and emission spectra of carbon dots after DMSO surface treatment(C) and schematic diagram of the structure and energy level arrangement of CDs before and after surface modification(D)[33](A, B) Copyright 2016, American Chemical Society; (C, D) Copyright 2018, John Wiley and Sons.
Fig.5 Preparation of cyanine dye (CyOH)⁃derived carbon dots(A) and their absorption and emission spectra(B)[61], schematic diagram of the preparation of polythiophene⁃derived carbon dots(C)[28](A, B) Copyright 2016, American Chemical Society; (C) Copyright 2017, Springer Nature.
Fig.6 Schematic diagram of the preparation of exfoliated carbon dots(A) and absorption emission spectrum and up⁃conversion emission spectrum(B)[35]Copyright 2019, John Wiley and Sons.
Fig.7 Schematic diagram of oxygen⁃related defect engineering of near⁃infrared carbon dots(A) and their absorption and emission spectra(B)[37]Copyright 2023, John Wiley and Sons.
Sample | Abs./nm | λem/nm | PLQY(%) | Solvent | Ref. |
---|---|---|---|---|---|
CDs | 400—800 | 925 | 0.4 | H2O | [ |
Cy⁃CD | 783 | 835 | 3.4 | Ethyl alcohol | [ |
NIR⁃PCNDs | 277, 450—631 | 655, 710 | 26.28 | Ethyl alcohol | [ |
R⁃CDs | 634 | 715 | 43.2 | Ethyl alcohol | [ |
R⁃CDs | 661 | 745 | 12.8 | Ethyl alcohol | [ |
NIR⁃CPDs | 722 | 908 | 0.44—4.41 | DMSO | [ |
NIR⁃CDs | 605 | 704 | 31 | H2O | [ |
CDs | 715 | 760 | 10 | DMSO | [ |
CDs | 605 | 720 | 0.2 | H2O | [ |
NIR⁃CDs | 724 | 770 | 11 | DMF | [ |
CDs@PEI | 741 | 765 | 18.8 | DMF | [ |
CDs@BSA | 726 | 751 | 8.3 | H2O | [ |
ox⁃CDs | 720 | 770 | 9.7 | DMSO | [ |
N⁃CDs⁃F | 556, 624 | 658, 777 | 9.8 | DMF | [ |
N⁃B⁃GQDs | 650—950 | 1000 | 1.0 | H2O | [ |
Fe⁃CDs | 830 | 1000 | 1.27 | H2O | [ |
Cy7⁃CDs | 620 | 710 | 18.8 | Methyl alcohol | [ |
NIR⁃CDs | 625 | 1085 | 0.42 | Acetone | [ |
CDs | 655 | 715 | 0.2 | H2O | [ |
Ln⁃CQDs | 348 | 998/1068 | <0.5 | H2O | [ |
Table 1 Optical properties of some CDs with NIR emission
Sample | Abs./nm | λem/nm | PLQY(%) | Solvent | Ref. |
---|---|---|---|---|---|
CDs | 400—800 | 925 | 0.4 | H2O | [ |
Cy⁃CD | 783 | 835 | 3.4 | Ethyl alcohol | [ |
NIR⁃PCNDs | 277, 450—631 | 655, 710 | 26.28 | Ethyl alcohol | [ |
R⁃CDs | 634 | 715 | 43.2 | Ethyl alcohol | [ |
R⁃CDs | 661 | 745 | 12.8 | Ethyl alcohol | [ |
NIR⁃CPDs | 722 | 908 | 0.44—4.41 | DMSO | [ |
NIR⁃CDs | 605 | 704 | 31 | H2O | [ |
CDs | 715 | 760 | 10 | DMSO | [ |
CDs | 605 | 720 | 0.2 | H2O | [ |
NIR⁃CDs | 724 | 770 | 11 | DMF | [ |
CDs@PEI | 741 | 765 | 18.8 | DMF | [ |
CDs@BSA | 726 | 751 | 8.3 | H2O | [ |
ox⁃CDs | 720 | 770 | 9.7 | DMSO | [ |
N⁃CDs⁃F | 556, 624 | 658, 777 | 9.8 | DMF | [ |
N⁃B⁃GQDs | 650—950 | 1000 | 1.0 | H2O | [ |
Fe⁃CDs | 830 | 1000 | 1.27 | H2O | [ |
Cy7⁃CDs | 620 | 710 | 18.8 | Methyl alcohol | [ |
NIR⁃CDs | 625 | 1085 | 0.42 | Acetone | [ |
CDs | 655 | 715 | 0.2 | H2O | [ |
Ln⁃CQDs | 348 | 998/1068 | <0.5 | H2O | [ |
Fig.8 Application of the near⁃infrared carbon dots in imaging of mouse stomach(A), two⁃photon imaging of mouse ear blood vessels(B)[36], and photoacoustic imaging of mouse tumors(C)[34](A, B) Copyright 2022, the Authors; (C) Copyright 2018, the Authors.
Fig.9 Schematic diagram of near⁃infrared carbon dots used for near⁃infrared second⁃zone photothermal treatment of tumors(A)[49], photothermal imaging of mouse tumors(B) and photothermal treatment process(C)[34](A) Copyright 2021, John Wiley and Sons; (B, C) Copyright 2018, the Authors.
Fig.10 Schematic diagram of ultra⁃high⁃yield singlet oxygen production(A)[70], schematic diagram of the preparation of Mn⁃doped carbon dots and their photodynamic therapy for tumors(B)[51], electron spin resonance(ESR) spectrum of hydroxyl radicals generated by near⁃infrared carbon dot photocatalysis(C) and photocatalytic treatment process of mouse tumors(D)[37](A) Copyright 2014, the Authors; (B) Copyright 2018, John Wiley and Sons; (C, D) Copyright 2023, John Wiley and Sons.
Fig.11 Application of near⁃infrared carbon dots in LEDs(A) and plant growth irradiation(B)[39], spectraof visible to near⁃infrared phosphorescent carbon dots and their encryption applications(C)[84](A, B) Copyright 2022, the Authors. Published by John Wiley and Sons; (C) Copyright 2023, Elsevier.
1 | Ðorđević L., Arcudi F., Cacioppo M., Prato M., Nat. Nanotechnol., 2022, 17(2), 112—130 |
2 | Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737 |
3 | Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., Xie S. Y., J. Am. Chem. Soc., 2006, 128(24), 7756—7757 |
4 | Ai L., Shi R., Yang J., Zhang K., Zhang T., Lu S., Small, 2021, 17(48), 2007523 |
5 | Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6(23), 1901316 |
6 | Tao S. Y., Xia C. L., Yang B., Chem. J. Chinese Universities, 2023, 44(10), 20230241 |
陶淞源, 夏春雷, 杨柏. 高等学校化学学报, 2023, 44(10), 20230241 | |
7 | Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6(12), 2179—2195 |
8 | Li L., Wu G., Yang G., Peng J., Zhao J., Zhu J. J., Nanoscale, 2013, 5(10), 4015—4039 |
9 | Zhao Q. L., Zhang Z. L., Huang B. H., Peng J., Zhang M., Pang D. W., Chem. Commun., 2008(41), 5116—5118 |
10 | Pan D., Zhang J., Li Z., Wu M., Adv. Mater., 2010, 22(6), 734—738 |
11 | Shen J., Zhu Y., Chen C., Yang X., Li C., Chem. Commun., 2011, 47(9), 2580—2582 |
12 | Sun H. Z., Yang G. D., Yang B., Chem. J. Chinese Universities, 2021, 42(2), 349—365 |
孙海珠, 杨国夺, 杨柏. 高等学校化学学报, 2021, 42(2), 349—365 | |
13 | Qu S., Wang X., Lu Q., Liu X., Wang L., Angew. Chem. Int. Ed., 2012, 51(49), 12215—12218 |
14 | Tian Z., Zhang X., Li D., Zhou D., Jing P., Shen D., Qu S., Zboril R., Rogach A. L., Adv. Opt. Mater., 2017, 5(19), 1700416 |
15 | Jiang K., Sun S., Zhang L., Lu Y., Wu A., Cai C., Lin H., Angew. Chem. Int. Ed., 2015, 54(18), 5360—5363 |
16 | Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano, 2016, 10(1), 484—491 |
17 | Ding H., Wei J. S., Zhang P., Zhou Z. Y., Gao Q. Y., Xiong H. M., Small, 2018, 14(22), 1800612 |
18 | Liu J., Geng Y., Li D., Yao H., Huo Z., Li Y., Zhang K., Zhu S., Wei H., Xu W., Jiang J., Yang B., Adv. Mater., 2020, 32(17), 1906641 |
19 | Wareing T. C., Gentile P., Phan A. N., ACS Nano, 2021, 15(10), 15471—15501 |
20 | Liu J., Kong T., Xiong H. M., Adv. Mater., 2022, 34(16), 2200152 |
21 | Fang M., Wang B., Qu X., Li S., Huang J., Li J., Lu S., Zhou N., Chin. Chem. Lett., 2024, 35(1), 108423 |
22 | Bourlinos A. B., Stassinopoulos A., Anglos D., Zboril R., Karakassides M., Giannelis E. P., Small, 2008, 4(4), 455—458 |
23 | Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem. Int. Ed., 2013, 52(14), 3953—3957 |
24 | Liu J., Li D., Zhang K., Yang M., Sun H., Yang B., Small, 2018, 14(15), 1703919 |
25 | Fu F. M., Xu M. R., Liang Z. S., Huang S. R., Li H., Zhang H. R., Li W., Zheng M. T., Lei B. F., Chem. J. Chinese Universities, 2023, 44(2), 20220464 |
符芳媚, 徐梦如, 梁梓珊, 黄斯锐, 李晖, 张浩然, 李唯, 郑明涛, 雷炳富. 高等学校化学学报, 2023, 44(2), 20220464 | |
26 | Hong G., Antaris A. L., Dai H., Nature Biomedical Engineering, 2017, 1(1), 0010 |
27 | He H., Wang Z., Cheng T., Liu X., Wang X., Wang J., Ren H., Sun Y., Song Y., Yang J., Xia Y., Wang S., Zhang X., Huang F., ACS Appl. Mater. Interfaces, 2016, 8(42), 28529—28537 |
28 | Lan M., Zhao S., Zhang Z., Yan L., Guo L., Niu G., Zhang J., Zhao J., Zhang H., Wang P., Zhu G., Lee C. S., Zhang W., Nano Res., 2017, 10(9), 3113—3123 |
29 | Lu S., Sui L., Liu J., Zhu S., Chen A., Jin M., Yang B., Adv. Mater., 2017, 29(15), 1603443 |
30 | Han T., Wang Y., Ma S., Li M., Zhu N., Tao S., Xu J., Sun B., Jia Y., Zhang Y., Zhu S., Yang B., Adv. Sci., 2022, 9(30), 2203474 |
31 | Ding H., Zhou X., Qin B., Zhou Z., Zhao Y., J. Lumin., 2019, 211, 298—304 |
32 | Li Y., Bai G., Zeng S., Hao J., ACS Appl. Mater. Interfaces, 2019, 11(5), 4737—4744 |
33 | Li D., Jing P., Sun L., An Y., Shan X., Lu X., Zhou D., Han D., Shen D., Zhai Y., Qu S., Zbořil R., Rogach A. L., Adv. Mater., 2018, 30(13), 1705913 |
34 | Bao X., Yuan Y., Chen J., Zhang B., Li D., Zhou D., Jing P., Xu G., Wang Y., Holá K., Shen D., Wu C., Song L., Liu C., Zbořil R., Qu S., Light Sci. Appl., 2018, 7(1), 91 |
35 | Li D., Liang C., Ushakova E. V., Sun M., Huang X., Zhang X., Jing P., Yoo S. J., Kim J. G., Liu E., Zhang W., Jing L., Xing G., Zheng W., Tang Z., Qu S., Rogach A. L., Small, 2019, 15(50), 1905050 |
36 | Liu Y., Lei J. H., Wang G., Zhang Z., Wu J., Zhang B., Zhang H., Liu E., Wang L., Liu T. M., Xing G., Ouyang D., Deng C. X., Tang Z., Qu S., Adv. Sci., 2022, 9(23), 2202283 |
37 | Zhang T., Cheng Q., Lei J. H., Wang B., Chang Y., Liu Y., Xing G., Deng C., Tang Z., Qu S., Adv. Mater., 2023, 35(35), 2302705 |
38 | Sk M. A., Ananthanarayanan A., Huang L., Lim K. H., Chen P., J. Mater. Chem. C, 2014, 2(34), 6954—6960 |
39 | Xu B., Li J., Zhang J., Ning H., Fang X., Shen J., Zhou H., Jiang T., Gao Z., Meng X., Wang Z., Adv. Sci., 2023, 10(4), 2205788 |
40 | Ru Y., Sui L., Song H., Liu X., Tang Z., Zang S. Q., Yang B., Lu S., Angew. Chem. Int. Ed., 2021, 60(25), 14091—14099 |
41 | Li D., Ushakova E. V., Rogach A. L., Qu S., Small, 2021, 17(43), 2102325 |
42 | Yan F., Zhang H., Yu N., Sun Z., Chen L., Sensors and Actuators B: Chemical, 2021, 329, 129263 |
43 | Wang Z., Yuan F., Li X., Li Y., Zhong H., Fan L., Yang S., Adv. Mater., 2017, 29(37), 1702910 |
44 | Wang B., Wei Z., Sui L., Yu J., Zhang B., Wang X., Feng S., Song H., Yong X., Tian Y., Yang B., Lu S., Light Sci. Appl., 2022, 11(1), 172 |
45 | Ji C., Han Q., Zhou Y., Wu J., Shi W., Gao L., Leblanc R. M., Peng Z., Carbon, 2022, 192, 198—208 |
46 | Jiang L., Ding H., Xu M., Hu X., Li S., Zhang M., Zhang Q., Wang Q., Lu S., Tian Y., Bi H., Small, 2020, 16(19), 2000680 |
47 | Wang B., Yu J., Sui L., Zhu S., Tang Z., Yang B., Lu S., Adv. Sci., 2021, 8(1), 2001453 |
48 | Sarkar S., Das K., Ghosh M., Das P. K., RSC Advances, 2015, 5(81), 65913—65921 |
49 | Tian B., Liu S., Feng L., Liu S., Gai S., Dai Y., Xie L., Liu B., Yang P., Zhao Y., Adv. Funct. Mater., 2021, 31(26), 2100549 |
50 | Ci Q., Wang Y., Wu B., Coy E., Li J. j., Jiang D., Zhang P., Wang G., Adv. Sci., 2023, 10(7), 2206271 |
51 | Jia Q., Ge J., Liu W., Zheng X., Chen S., Wen Y., Zhang H., Wang P., Adv. Mater., 2018, 30(13), 1706090 |
52 | Wang H., Mu Q., Wang K., Revia R. A., Yen C., Gu X., Tian B., Liu J., Zhang M., Applied Materials Today, 2019, 14, 108—117 |
53 | Li X., Fu Y., Zhao S., Xiao J., Lan M., Wang B., Zhang K., Song X., Zeng L., Chem. Eng. J., 2022, 430, 133101 |
54 | Guo X. L., Ding Z. Y., Deng S. M., Wen C. C., Shen X. C., Jiang B. P., Liang H., Carbon, 2018, 134, 519—530 |
55 | Zhang M., Zhai X., Sun M., Ma T., Huang Y., Huang B., Du Y., Yan C., Chem. Soc. Rev., 2020, 49(24), 9220—9248 |
56 | Zhu Q., Zhang L., Van Vliet K., Miserez A., Holten⁃Andersen N., ACS Appl. Mater. Interfaces, 2018, 10(12), 10409—10418 |
57 | Wu F., Su H., Zhu X., Wang K., Zhang Z., Wong W. K., J. Mater. Chem. B, 2016, 4(38), 6366—6372 |
58 | Liu J., Ge X., Sun L., Wei R., Liu J., Shi L., RSC Advances, 2016, 6(53), 47427—47433 |
59 | Ding H., Li X. H., Chen X. B., Wei J. S., Li X. B., Xiong H. M., J. Appl. Phys., 2020, 127(23), 231101 |
60 | Qu S., Zhou D., Li D., Ji W., Jing P., Han D., Liu L., Zeng H., Shen D., Adv. Mater., 2016, 28(18), 3516—3521 |
61 | Zheng M., Li Y., Liu S., Wang W., Xie Z., Jing X., ACS Appl. Mater. Interfaces, 2016, 8(36), 23533—23541 |
62 | Liu W., Gu H., Liu W., Lv C., Du J., Fan J., Peng X., Chem. Eng. J., 2022, 450, 137384 |
63 | Geng B., Hu J., Li Y., Feng S., Pan D., Feng L., Shen L., Nat. Commun., 2022, 13(1), 5735 |
64 | Jiang Y., Tan Z., Zhao T., Wu J., Li Y., Jia Y., Peng Z., Nanoscale, 2023, 15(4), 1925—1936 |
65 | Jana D., Wang D., Rajendran P., Bindra A. K., Guo Y., Liu J., Pramanik M., Zhao Y., JACS Au, 2021, 1(12), 2328—2338 |
66 | Stepanidenko E. A., Skurlov I. D., Khavlyuk P. D., Onishchuk D. A., Koroleva A. V., Zhizhin E. V., Arefina I. A., Kurdyukov D. A., Eurov D. A., Golubev V. G., Baranov A. V., Fedorov A. V., Ushakova E. V., Rogach A. L., Nanomaterials, 2022, 12(3), 543 |
67 | Huang D., Zhou H., Wu Y., Wang T., Sun L., Gao P., Sun Y., Huang H., Zhou G., Hu J., Carbon, 2019, 142, 673—684 |
68 | Wang Y., Li X., Zhao S., Wang B., Song X., Xiao J., Lan M., Coord. Chem. Rev., 2022, 470, 214703 |
69 | Jia Q., Ge J., Liu W., Guo L., Zheng X., Chen S., Chen M., Liu S., Zhang L., Wang M., Zhang H., Wang P., Adv. Healthc. Mater., 2017, 6(12), 1601419 |
70 | Ge J., Lan M., Zhou B., Liu W., Guo L., Wang H., Jia Q., Niu G., Huang X., Zhou H., Meng X., Wang P., Lee C. S., Zhang W., Han X., Nat. Commun., 2014, 5(1), 4596 |
71 | Li D., Han D., Qu S. N., Liu L., Jing P. T., Zhou D., Ji W. Y., Wang X. Y., Zhang T. F., Shen D. Z., Light Sci. Appl., 2016, 5(7), e16120 |
72 | Li D., Qu Y., Zhang X., Zheng W., Rogach A. L., Qu S., Chem. Eng. J., 2023, 454, 140069 |
73 | Liang T., Liu E., Li M., Ushakova E. V., Kershaw S. V., Rogach A. L., Tang Z., Qu S., ACS Nano, 2021, 15(1), 1579—1586 |
74 | Bu X., Wang H., Zhang F., Li Q., Zhu J., Ding J., Sun J., Liu Y., Jiang T., ACS Appl. Nano Mater., 2022, 5(8), 11447—11457 |
75 | Sar D., Ostadhossein F., Moitra P., Alafeef M., Pan D., Adv. Sci., 2022, 9(22), 2202414 |
76 | Li S., Su W., Wu H., Yuan T., Yuan C., Liu J., Deng G., Gao X., Chen Z., Bao Y., Yuan F., Zhou S., Tan H., Li Y., Li X., Fan L., Zhu J., Chen A. T., Liu F., Zhou Y., Li M., Zhai X., Zhou J., Nature Biomedical Engineering, 2020, 4(7), 704—716 |
77 | Cheng H. B., Li Y., Tang B. Z., Yoon J., Chem. Soc. Rev., 2020, 49(1), 21—31 |
78 | Zhao W. B., Chen D. D., Liu K. K., Wang Y., Zhou R., Song S. Y., Li F. K., Sui L. Z., Lou Q., Hou L., Shan C. X., Chem. Eng. J., 2023, 452, 139231 |
79 | Geng B., Yang D., Pan D., Wang L., Zheng F., Shen W., Zhang C., Li X., Carbon, 2018, 134, 153—162 |
80 | Geng B., Shen W., Fang F., Qin H., Li P., Wang X., Li X., Pan D., Shen L., Carbon, 2020, 162, 220—233 |
81 | Zhang Y., Jia Q., Nan F., Wang J., Liang K., Li J., Xue X., Ren H., Liu W., Ge J., Wang P., Biomaterials, 2023, 293, 121953 |
82 | Zhang H., Cheng Q., Lei J. H., Hao T., Deng C. X., Tang Z., Qu S., J. Colloid Interface Sci., 2023, 644, 107—115 |
83 | Wang K., Qu L., Yang C., Small, 2023, 19(31), 2206429 |
84 | Li Q., Cheng D., Gu H., Yang D., Li Y., Meng S., Zhao Y., Tang Z., Zhang Y., Tan J., Qu S., Chem. Eng. J., 2023, 462, 142339 |
[1] | 刘翼泽, 李鹏飞, 孙再成. 碳点发光机制与结构之间的构效关系[J]. 高等学校化学学报, 2025, 46(6): 20250103. |
[2] | 杨春圆, 陈昊, 张攀, 李府赪, 袁伟雄, 郭佳壮, 王彩凤, 陈苏. 绿色荧光碳点的合成、 荧光机制和图案化[J]. 高等学校化学学报, 2025, 46(6): 20250093. |
[3] | 刘瀛琪, 王叶梅, 蒋恺, 郑芬芬, 朱俊杰. 基于细胞衍生荧光碳点的葡萄糖比色及荧光测定[J]. 高等学校化学学报, 2025, 46(6): 20240386. |
[4] | 郝永梁, 李建, 王泽华, 葛介超. 基于红光碳点光敏剂的活性收缩水凝胶用于细菌感染的伤口愈合[J]. 高等学校化学学报, 2025, 46(6): 20240409. |
[5] | 王欣, 王宇, 穆富茂, 闫翎鹏, 王振国, 杨永珍. 碳点在有机太阳能电池界面工程中的应用与展望[J]. 高等学校化学学报, 2025, 46(6): 20240416. |
[6] | 陈奇丹, 陈冠吉, 游善媚, 臧欣瑶, 杨柏. 可用于防晒吸收剂的广谱抗紫外碳点的制备[J]. 高等学校化学学报, 2025, 46(6): 20240313. |
[7] | 潘卓涵, 艾琳, 卢思宇. 固态发光碳点的发光机理、 合成与应用研究进展[J]. 高等学校化学学报, 2025, 46(6): 20250081. |
[8] | 江霆杰, 曹珏然, 姚胜峰, 宋健, 李娜, 陈永颖, 李唯, 张浩然, 雷炳富. 菠菜基水溶红色荧光碳点的微波合成及Pb2+荧光检测性能[J]. 高等学校化学学报, 2025, 46(6): 20250082. |
[9] | 郭丹, 黄耿鸿, 白惠洁, 王亚玲, 曹广群, 刘斌, 胡胜亮. 高荧光量子产率的CO2衍生红光碳点的制备及应用[J]. 高等学校化学学报, 2025, 46(6): 20250091. |
[10] | 薛小矿, 李建, 梁焕仪, 王一颖, 葛介超. 红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗[J]. 高等学校化学学报, 2025, 46(6): 20250094. |
[11] | 倪佳文, 黄遵辉, 宋天兵, 马千里, 何天乐, 张熙荣, 熊焕明. 利用固相合成的硼掺杂碳点调控锂负极的有序沉积[J]. 高等学校化学学报, 2025, 46(6): 20240185. |
[12] | 李燕, 蔡皓, 毕红. 抗氧化碳点用于对乙酰氨基苯酚诱导的急性肝损伤的改善[J]. 高等学校化学学报, 2025, 46(6): 20240130. |
[13] | 刘金坤, 冉准, 刘青青, 刘应亮, 庄健乐, 胡超凡. 前驱体结构调控策略制备碳点基多色室温磷光材料[J]. 高等学校化学学报, 2025, 46(6): 20240412. |
[14] | 庞娥, 唐垣钰, 赵少静, 程强, 王晨, 陈健敏, 蓝敏焕. 乏氧激活化疗药物AQ4N与碳点自组装用于化疗联合声动力治疗肿瘤[J]. 高等学校化学学报, 2025, 46(6): 20240489. |
[15] | 李逢时, 蒋凯, 童鑫园, 武永健, 林恒伟. 硼掺杂控制陷阱密度及能级实现碳点的余辉寿命调控与动态信息加密应用[J]. 高等学校化学学报, 2025, 46(6): 20240545. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||