高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6): 20240416.doi: 10.7503/cjcu20240416
王欣1,2, 王宇1, 穆富茂1, 闫翎鹏1(), 王振国2, 杨永珍3(
)
收稿日期:
2024-09-02
出版日期:
2025-06-10
发布日期:
2024-10-14
通讯作者:
杨永珍
E-mail:yanlingpeng@tyut.edu.cn;yangyongzhen@tyut.edu.cn
作者简介:
闫翎鹏, 男, 博士, 副研究员, 主要从事有机太阳能电池衰减机理及其稳定性提升方面的研究. E-mail: yanlingpeng@tyut.edu.cn
基金资助:
WANG Xin1,2, WANG Yu1, MU Fumao1, YAN Lingpeng1(), WANG Zhenguo2, YANG Yongzhen3(
)
Received:
2024-09-02
Online:
2025-06-10
Published:
2024-10-14
Contact:
YANG Yongzhen
E-mail:yanlingpeng@tyut.edu.cn;yangyongzhen@tyut.edu.cn
Supported by:
摘要:
有机太阳能电池(OSCs)因具有制备工艺简单、 材料来源广泛、 柔性及可以卷对卷生产等优势而逐渐成为光伏领域的研究热点. 在进一步商业化推广的道路上, OSCs也面临着提高光电转换效率(PCE)、 规模化生产、 降低成本及提高稳定性等诸多挑战. 在探索解决这些问题的研究中, 碳点(CDs)因具有成本低、 结构多样、 绿色环保、 来源广泛、 导电性高及稳定性好等优点而备受关注. 在OSCs器件中, CDs可以作为电荷传输层和界面修饰层材料使用, 通过界面工程改善电池界面处的能级匹配和电荷传输性能, 提升OSCs器件的整体性能, 为光伏电池的发展提供新的思路, 成为推动OSCs发展的关键材料之一. 本文介绍了CDs的概念、 分类和独特的结构特征, 综合评述了其优异的可调光电特性和功能化改性方法, 总结了CDs在OSCs界面工程领域的应用, 指出了应用于OSCs领域的CDs基界面材料存在的问题, 并对其进一步发展进行了展望.
中图分类号:
TrendMD:
王欣, 王宇, 穆富茂, 闫翎鹏, 王振国, 杨永珍. 碳点在有机太阳能电池界面工程中的应用与展望. 高等学校化学学报, 2025, 46(6): 20240416.
WANG Xin, WANG Yu, MU Fumao, YAN Lingpeng, WANG Zhenguo, YANG Yongzhen. Applications and Prospects of Carbon Dots in Interface Engineering of Organic Solar Cells. Chem. J. Chinese Universities, 2025, 46(6): 20240416.
Fig.1 Schematic diagram of carbon nucleus and functional groups of typical CDs(A)[16] and structure diagram of GQDs, CQDs, CNDs and CPDs(B)[23](A) Copyright 2022, Chinese Chemical Society and Institute of Chemistry, Chinese Academy of Sciences; (B) Copyright 2019, Wiley-VCH.
Fig.2 UV⁃Vis absorption spectra of typical CQDs(A)[35], the UV⁃Vis absorption spectra of CQDs with deep UV to near⁃infrared light absorption(B)[36] and schematic diagram of various typical electronic transition processes of CQDs(C)[47](A) Copyright 2013, Wiley-VCH; (B) Copyright 2014, American Chemical Society; (C)Copyright 2011, the Royal Society of Chemistry.
Functionalization method | Type | Property regulation | Advantage | Problem | Application scope |
---|---|---|---|---|---|
Doping | Non⁃metallic atoms doping | Conductivity, energy structure, QY, hydrophilicity/hydrophobicity, chemical stability | Improved fluorescence performance, improved electrical performance, enhanced stability, expansion of application areas, convenient preparation method | Blending uniformity problem, control of blending concentration, defects in blending introduction, expensive price of rare metals, difficult to accurately control the doping amount and doping position of heteroatoms | Optoelectronic devices, photocatalysis, sensing, electrocatalysis, drug delivery |
Metal atoms doping | Conductivity, energy structure, charge transfer capability, QY, active site density | ||||
Co⁃doping | Luminescence properties, absorption spectra, conductivity, carrier mobility, stability | ||||
Surface modification | Covalent modification | Luminescence performance, surface property, multi functionality, che⁃mical stability | Improved fluorescence performance, improved stability and solubility, regulation of surface charge and polarity | Uniformity and stability of modification, complexity of modification process, problem of scale preparation | Optoelectronic devices, fluorescent probes and fluorescent imaging, bioimaging and biosensors, drug delivery |
Non covalent modification | Optical/electrical property regulation, stability, solubility and dispersibility |
Table 1 Summary of different functionalization methods for CDs
Functionalization method | Type | Property regulation | Advantage | Problem | Application scope |
---|---|---|---|---|---|
Doping | Non⁃metallic atoms doping | Conductivity, energy structure, QY, hydrophilicity/hydrophobicity, chemical stability | Improved fluorescence performance, improved electrical performance, enhanced stability, expansion of application areas, convenient preparation method | Blending uniformity problem, control of blending concentration, defects in blending introduction, expensive price of rare metals, difficult to accurately control the doping amount and doping position of heteroatoms | Optoelectronic devices, photocatalysis, sensing, electrocatalysis, drug delivery |
Metal atoms doping | Conductivity, energy structure, charge transfer capability, QY, active site density | ||||
Co⁃doping | Luminescence properties, absorption spectra, conductivity, carrier mobility, stability | ||||
Surface modification | Covalent modification | Luminescence performance, surface property, multi functionality, che⁃mical stability | Improved fluorescence performance, improved stability and solubility, regulation of surface charge and polarity | Uniformity and stability of modification, complexity of modification process, problem of scale preparation | Optoelectronic devices, fluorescent probes and fluorescent imaging, bioimaging and biosensors, drug delivery |
Non covalent modification | Optical/electrical property regulation, stability, solubility and dispersibility |
Fig.3 OSCs structure and active layer used(A), PEI, PTCDA, SnO2, and CDs as the J⁃V curves of ETL devices(B), corresponding EQE spectrum(C), PCE distribution with PM6∶Y6∶PC71BM as the active layer(D), the storage stability of devices based on SnO2 and CDs in N2 atmosphere(E)[53], schematic representation of the fabricated inverted OSCs(F), transmittance spectra of the SnO2 film coated with or without C⁃dots and N⁃C⁃dots(G) and J⁃V curves measured(H)[67](A—E) Copyright 2022, American Chemical Society; (F—H) Copyright 2023, Multidisciplinary Digital Publishing Institute.
Fig.4 J⁃V curves of OSCs using GQDs of different thicknesses as HTL(A), PCE changes of OSCs with PEDOT∶PSS, GO, and GQDs as HTL exposed to air(B)[68], UV⁃Vis absorption spectra of GQDs and GO(C) and photoluminescence spectrum of GQDs(D)[70](A, B) Copyright 2013, the Royal Society of Chemistry; (C, D) Copyright 2020, Wiley-VCH.
Application | Device structure | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|
ETL | ITO/PEDOT∶PSS/PCDTBT∶PC71BM/GQDs⁃TMA/Al | 0.91 | 10.84 | 71.11 | 7.01 | [ |
ITO/PEDOT∶PSS /PTB7⁃Th∶PC71BM/C⁃CQDs/Al | 0.79 | 16.23 | 64.00 | 8.23 | [ | |
ITO/PEDOT∶PSS/PCDTBT∶PC71BM/GQDs⁃NI/Al | 0.93 | 10.98 | 73.39 | 7.49 | [ | |
ITO/CDs/PM6∶Y6/MoO3/Al | 0.830 | 24.52 | 75.89 | 15.41 | [ | |
ITO/CDs/PM6∶BTP⁃eC9/MoO3/Al | 0.841 | 26.88 | 76.73 | 17.35 | [ | |
HTL | ITO/GQDs/BHJ/LiF/Al | 0.52 | 10.20 | 66.30 | 3.51 | [ |
ITO/GQDs/PTB7⁃Th∶PC71BM/LiF/Al | 0.75 | 15.20 | 69.00 | 7.91 | [ | |
ITO/GQDs/PTB7⁃Th∶PC71BM/LiF/Al | 0.89 | 10.65 | 67.00 | 6.30 |
Table 2 Photovoltaic performance parameters of CDs as ETL or HTL for OSCs
Application | Device structure | VOC/V | JSC/(mA·cm-2) | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|
ETL | ITO/PEDOT∶PSS/PCDTBT∶PC71BM/GQDs⁃TMA/Al | 0.91 | 10.84 | 71.11 | 7.01 | [ |
ITO/PEDOT∶PSS /PTB7⁃Th∶PC71BM/C⁃CQDs/Al | 0.79 | 16.23 | 64.00 | 8.23 | [ | |
ITO/PEDOT∶PSS/PCDTBT∶PC71BM/GQDs⁃NI/Al | 0.93 | 10.98 | 73.39 | 7.49 | [ | |
ITO/CDs/PM6∶Y6/MoO3/Al | 0.830 | 24.52 | 75.89 | 15.41 | [ | |
ITO/CDs/PM6∶BTP⁃eC9/MoO3/Al | 0.841 | 26.88 | 76.73 | 17.35 | [ | |
HTL | ITO/GQDs/BHJ/LiF/Al | 0.52 | 10.20 | 66.30 | 3.51 | [ |
ITO/GQDs/PTB7⁃Th∶PC71BM/LiF/Al | 0.75 | 15.20 | 69.00 | 7.91 | [ | |
ITO/GQDs/PTB7⁃Th∶PC71BM/LiF/Al | 0.89 | 10.65 | 67.00 | 6.30 |
Application | Device structure | VOC/V | JSC/(mA·cm-2) | F(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|
ETL | ITO/ZnO/CDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 17.59 | 68.27 | 9.01 | [ |
ITO/AZO/CDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 17.65 | 69.50 | 9.20 | ||
ITO/AZO/CDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 18.12 | 70.64 | 10.24 | ||
ITO/TiO2∶CQDs/PCDTBT∶PC71BM/MoO3/Ag | 0.85 | 15.02 | 57.36 | 7.33 | [ | |
ITO/ZnO∶N,S⁃CQDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 17.20 | 68.00 | 9.36 | [ | |
ITO/ZnO∶N⁃CQDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 16.91 | 67.00 | 9.06 | ||
ITO/PEI: CQDs/PTB7⁃Th∶PC71BM/M⁃PEDOT∶PSS/PEI∶CQDs/ PTB7⁃Th∶PC71BM/MoO3/Ag | 1.58 | 11.48 | 66.80 | 12.13 | [ | |
ITO/ZnO/CNDs/PTB7⁃Th∶PC71BM/MoO3/Ag | 0.78 | 16.6 | 72.1 | 9.4 | [ | |
ITO/ZnO/CQDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 19.60 | 66.4 | 9.64 | [ | |
ITO/ZnO/CQDs/P3HT∶PCBM/MoO3/Al | 0.57 | 13.30 | 64.2 | 4.85 | ||
ITO/CD@ZnO/PM6∶IT⁃4F/MoO3/Al | 0.83 | 20.75 | 71.01 | 12.23 | [ | |
ITO/PEI@CQDs/PTB7⁃Th∶PC71BM/MoO3/Ag | 0.78 | 17.75 | 68.30 | 9.47 | [ | |
ITO/ZnO/Ae⁃GQDs⁃Os/PTB7∶PC71BM/MoO3/Al | 0.71 | 16.29 | 52.00 | 5.98 | [ | |
HTL | ITO/PEDOT∶PSS+CDs⁃N/PM6∶Y6/PDINO/Ag | 0.841 | 27.03 | 72.7 | 16.5 | [ |
ITO/ZnO/P3HT∶PC61BM/EDOT∶PSS+CDs/Ag | 0.60 | 12.00 | 53.25 | 3.90 | [ |
Table 3 Device performance of carbon nanomaterials with ETL/HTL modified by CDs
Application | Device structure | VOC/V | JSC/(mA·cm-2) | F(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|
ETL | ITO/ZnO/CDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 17.59 | 68.27 | 9.01 | [ |
ITO/AZO/CDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 17.65 | 69.50 | 9.20 | ||
ITO/AZO/CDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 18.12 | 70.64 | 10.24 | ||
ITO/TiO2∶CQDs/PCDTBT∶PC71BM/MoO3/Ag | 0.85 | 15.02 | 57.36 | 7.33 | [ | |
ITO/ZnO∶N,S⁃CQDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 17.20 | 68.00 | 9.36 | [ | |
ITO/ZnO∶N⁃CQDs/PTB7⁃Th∶PC71BM/MoO3/Al | 0.80 | 16.91 | 67.00 | 9.06 | ||
ITO/PEI: CQDs/PTB7⁃Th∶PC71BM/M⁃PEDOT∶PSS/PEI∶CQDs/ PTB7⁃Th∶PC71BM/MoO3/Ag | 1.58 | 11.48 | 66.80 | 12.13 | [ | |
ITO/ZnO/CNDs/PTB7⁃Th∶PC71BM/MoO3/Ag | 0.78 | 16.6 | 72.1 | 9.4 | [ | |
ITO/ZnO/CQDs/PTB7∶PC71BM/MoO3/Al | 0.75 | 19.60 | 66.4 | 9.64 | [ | |
ITO/ZnO/CQDs/P3HT∶PCBM/MoO3/Al | 0.57 | 13.30 | 64.2 | 4.85 | ||
ITO/CD@ZnO/PM6∶IT⁃4F/MoO3/Al | 0.83 | 20.75 | 71.01 | 12.23 | [ | |
ITO/PEI@CQDs/PTB7⁃Th∶PC71BM/MoO3/Ag | 0.78 | 17.75 | 68.30 | 9.47 | [ | |
ITO/ZnO/Ae⁃GQDs⁃Os/PTB7∶PC71BM/MoO3/Al | 0.71 | 16.29 | 52.00 | 5.98 | [ | |
HTL | ITO/PEDOT∶PSS+CDs⁃N/PM6∶Y6/PDINO/Ag | 0.841 | 27.03 | 72.7 | 16.5 | [ |
ITO/ZnO/P3HT∶PC61BM/EDOT∶PSS+CDs/Ag | 0.60 | 12.00 | 53.25 | 3.90 | [ |
Fig.5 Schematic diagram of the synthesis of CD@ZnO nanoparticles(A), J⁃V curves of OSCs based on different proportions of ETL(B), EQE spectra of OSCs based on different proportions of ETL(C)[75], device configuration of the inverted ETL⁃only OSCs with the ZnO/N,P⁃CDs bilayer ETL and chemical structure of N,PCDs(D) and UV⁃Vis absorption spectra of the donor PTB7 without ETL and with different ETL combinations[E][84](A—C) Copyright 2020, American Chemical Society; (D, E) Copyright 2023, Elsevier.
Fig.6 J⁃V curve and related performance parameters of optimal devices based on CDs(A), J⁃V curve(B) and IPCE spectra(C), dark J⁃V characteristic of OSCs with different ETLs(D) and PL decay of C⁃dots and C⁃dots@PEI of photoexcitation for C⁃dots(τ1) and C⁃dots@PEI(τ2)(E)[85]Copyright 2018, American Chemical Society.
Fig.7 The device structure and picture of PEDOT∶PSS+CDs⁃N solution(10%, mass fraction) stored over one year(A), J⁃V curves of best OSCs(B) and a schematic illustration of PEDOT∶PSS compositional distribution before and after CDs⁃N doping(C)[56]Copyright 2023, Wiley-VCH.
1 | Zhao J., Yang X., Shao Y., Sun R., Min J., Sci. China Mater., 2024, doi.org/10.1007/s40843-024-3074-6 |
2 | Kini G. P., Jeon S. J., Moon D. K., Adv. Funct. Mater., 2021, 31(15), 2007931 |
3 | Chen X., Qian D., Wang Y., Kirchartz T., Tress W., Yao H., Yuan J., Hülsbeck M., Zhang M., Zou Y., Sun Y., Li Y., Hou J., Inganäs O., Coropceanu V., Bredas J. L., Gao F., Nature Energy, 2021, 6(8), 799—806 |
4 | Mu Q., Feng L., Li Z., Fan K., Li Q., Wei Z., Cheng Y., Xu B., Sol. RRL, 2024, 8(18), 2400486 |
5 | Gong Y., Zou T., Li X., Qin S., Sun G., Liang T., Zhou R., Zhang J., Zhang J., Meng L., Wei Z., Li Y., Energy Environ. Sci., 2024, 17, 6844—6855 |
6 | Liu H., Li Y., Xu S., Zhou Y., Li Z., Adv. Funct. Mater., 2021, 31(50), 2106735 |
7 | Fukuda K., Yu K., Someya T., Adv. Energy Mater., 2020, 10(25), 2000765 |
8 | Yu R., Wu G., Tan Z., J. Energy Chem., 2021, 61, 29—46 |
9 | Gao J., Ma X., Xu C., Wang X., Son J., Jeong S. Y., Zhang Y., Zhang C., Wang K., Niu L., Zhang J., Woo H. Y., Zhang J., Zhang F., Chem. Eng. J., 2022, 428, 129276 |
10 | Guan S., Li Y., Xu C., Yin N., Xu C., Wang C., Wang M., Xu Y., Chen Q., Wang D., Zuo L., Chen H., Adv. Mater., 2024, 36, 2400342 |
11 | Ye L., Xiong Y., Zhang Q., Li S., Wang C., Jiang Z., Hou J., You W., Ade H., Adv. Mater., 2018, 30(8), 1705485 |
12 | Liu Y., Liu B., Ma C., Huang F., Feng G., Chen H., Hou J., Yan L., Wei Q., Luo Q., Bao Q., Ma W., Liu W., Li W., Wan X., Hu X., Han Y., Li Y., Zhou Y., Zou Y., Chen Y., Liu Y., Meng L., Li Y., Chen Y., Tang Z., Hu Z., Zhang Z., Bo Z., Sci. China Chem., 2022, 65, 224—268 |
13 | Bao L., Zhang Z., Tian Z., Zhang L., Liu C., Lin Y., Qi B., Pang D., Adv. Mater., 2011, 23(48), 5801—5806 |
14 | Kang Z., Lee S. T., Nanoscale, 2019, 11(41), 19214—19224 |
15 | Yeh T. F., Huang W., Chung C., Chiang I. T., Chen L., Chang H., Su W., Cheng C., Chen S., Teng H., J. Phys. Chem. Lett., 2016, 7(11), 2087—2092 |
16 | Zhao W., Li X., Zha H., Yang Y., Yan L., Luo Q., Liu X., Wang H., Ma C. Xu B., Chin. J. Polym. Sci., 2022, 40(1), 7—20 |
17 | Iijima S., Nature, 1991, 354(6348), 56—58 |
18 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666—669 |
19 | Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737 |
20 | Sun Y., Zhou B., Lin Y., Wang W., Fernando K. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., J. Am. Chem. Soc., 2006, 128(24), 7756—7757 |
21 | Cai T., Liu B., Pang E., Ren W., Li S., Hu S., New Carbon Mater., 2020, 35(6), 646—666 |
22 | Lu S., Yang B., SmartMat, 2022, 3(2), 207 |
23 | Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6(23), 1901316 |
24 | Zhao X., Tao S., Yang B., Chinese J. Chem., 2023, 41(17), 2206—2216 |
25 | Kong J., Wei Y., Zhou F., Shi L., Zhao S., Wan M., Zhang X., Molecules, 2024, 29(9), 2002 |
26 | Vercelli B., Coatings, 2021, 11(2), 232 |
27 | Shin D. H., Seo S. W., Kim J. M., Lee H. S., Choi S. H., J. Alloys Compd., 2018, 744, 1—6 |
28 | Zhang X., Li Z., Zhang Z., Li S., Liu C., Guo W., Shen L., Wen S., Qu S., Ruan S., J. Phys. Chem. C, 2016, 120(26), 13954—13962 |
29 | Wang W., Li X., Li M., Zhong W., Yuan Y., Lin Z., Zhu Y., Zhu S., Yang T., Liang Y., ACS Appl. Nano Mater., 2024, 7(17), 19963—19969 |
30 | Yue L., Wei Y., Fan J., Chen L., Li Q., Du J., Yu S., Yang Y., New Carbon Mater., 2021, 36(2), 373—389 |
31 | Namdari P., Negahdari B., Eatemadi A., Biomed. Pharmacother., 2017, 87, 209—222 |
32 | Sciortino A., Cannizzo A., Messina F., C⁃J. Carbon Res., 2018, 4(4), 67 |
33 | Li K., Suo W., Shao M., Zhu Y., Wang X., Feng J., Fang M., Zhu Y., Nano Energy, 2019, 63, 103834 |
34 | Song H., Liu X., Wang B., Tang Z., Lu S., Sci. Bull., 2019, 64(23), 1788—1794 |
35 | Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem. Int. Ed., 2013, 52(14), 3953—3957 |
36 | Tang L., Ji R., Li X., Bai G., Liu C., Hao J., Lin J., Jiang H., Teng K., Yang Z., ACS Nano, 2014, 8(6), 6312—6320 |
37 | Wu, Z., Liu Z., Yuan Y., J. Mater. Chem. B, 2017, 5(21), 3794—3809 |
38 | Holá K., Sudolská M., Kalytchuk S., Nachtigallová D., Rogach A. L., Otyepka M., Zbořil R., ACS Nano, 2017, 11(12), 12402—12410 |
39 | Yang Y., Lin X., Li W., Ou J., Yuan Z., Xie F., Hong W., Yu D., Ma Y., Chi Z., Chen X., ACS Appl. Mater., 2017, 9(17), 14953—14959 |
40 | Zhan J., Geng B., Wu K., Xu G., Wang L., Guo R., Lei B., Zheng F., Pan D., Wu M., Carbon, 2018, 130, 153—163 |
41 | Zhang M., Hu L., Wang H., Song Y., Liu Y., Li H., Shao M., Huang H., Kang Z., Nanoscale, 2018, 10(26), 12734—12742 |
42 | Lu S., Xiao G., Sui L., Feng T., Yong X., Zhu S., Li B., Liu Z., Zou B., Jin M., Tse J. S., Yan H., Yang B., Angew. Chem. Int. Ed., 2017, 129(22), 6283—6287 |
43 | Yu Y., Zeng Q., Tao S., Xia C., Liu C., Liu P., Yang B., Adv. Sci., 2023, 10(12), 2207621 |
44 | Molaei M., Sol. Energy, 2020, 196, 549—566 |
45 | He C., Peng L., Li L., Cao Y., Tu J., Huang W., Zhang K., RSC Adv., 2019, 9(26), 15084—15091 |
46 | Jia X., Li J., Wang E., Nanoscale, 2012, 4(18), 5572—5575 |
47 | Shen J., Zhu Y., Chen C., Yang X., Li C., Chem. Commun., 2011, 47(9), 2580—2582 |
48 | Li S., He Z., Zhang S., Hao Z., Zhong H., ACS Appl. Mater. Interfaces, 2024, 16(35), 46332—46340 |
49 | Javed N., O'Carroll D. M., Part. Part. Syst. Char., 2021, 38(4), 2000271 |
50 | Tian X., Li Y., Cui M., Wang Y., Hao X., Zhang Y., Li N., Chen Y., Gao X., Rong Q., Nian L., Org. Electron., 2022, 108, 106578 |
51 | Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6, 2179—2195 |
52 | Yan L., Yang Y., Ma C., Liu X., Wang H., Xu B., Carbon, 2016, 109, 598—607 |
53 | Dong Y., Yu R., Zhao B., Gong Y., Jia H., Ma Z., Gao H., Tan Z., ACS Appl. Mater., 2022, 14(1), 1280—1289 |
54 | Hazra N., Hazra S., Paul S., Banerjee A., Chem. Commun., 2023, 59, 4931—4934 |
55 | Fang M., Wang B., Qu X., Li S., Huang J., Li J., Lu S., Zhou N., Chin. Chem. Lett., 2024, 35(1), 108423 |
56 | Li X., Wang W., Zhong W., Tang Y., Wang X., Li H., Yang T., Liang Y., Adv. Mater. Interfaces, 2023, 10(35), 2300502 |
57 | Chen B., Liu M., Li C., Huang C., Adv. Colloid Interface Sci., 2019, 270, 165—190 |
58 | Miao S., Liang K., Zhu J., Yang B., Zhao D., Kong B., Nano Today, 2020, 33, 100879 |
59 | Nguyen D. N., Roh S. H., Kim D. H., Lee J. Y., Wang D. H., Kim J. K., Dyes Pigm., 2021, 194, 109610 |
60 | Fu Q., Sun S., Lu K., Li N., Dong Z., Chin. Chem. Lett., 2024, 35(7), 109136 |
61 | Fu Q., Li N., Lu K., Dong Z., Yang Y., Mater. Today Chem., 2024, 37, 102032 |
62 | Shen J., Zhang T., Cai Y., Chen X., Shang S., Li J., New J. Chem., 2017, 41(19), 11125—11137 |
63 | Wu M., Li J., Wu Y., Gong X., Wu M., Small, 2023, 19(42), 2302764 |
64 | Sato K., Sato R., Iso Y., Isobe T., Chem. Commun., 2020, 56(14), 2174—2177 |
65 | Kearns D., Calvin M., J. Chem. Phys., 1958, 29(4), 950—951 |
66 | Pang S., Chen Z., Li J., Chen Y., Liu Z., Wu H., Duan C., Huang F., Cao Y., Mater. Horiz., 2023, 10(2), 473—482 |
67 | Georgiopoulou Z., Verykios A., Ladomenou K., Maskanaki K., Chatzigiannakis G., Armadorou K. K., Palilis L. C., Chroneos A., Evangelou E. K., Gardelis S., Nanomaterials, 2023, 13(1), 169 |
68 | Li M., Ni W., Kan B., Wan X., Zhang L., Zhang Q., Long G., Zuo Y., Chen Y., Phys. Chem. Chem. Phys., 2013, 15(43), 18973—18978 |
69 | Ding Z., Hao Z., Meng B., Xie Z., Liu J., Dai L., Nano Energy, 2015, 15, 186—192 |
70 | Hoang T. T., Pham H. P., Tran Q. T., J. Nanomater., 2020, 2020(1), 3207909 |
71 | Li S., Li L., Tu H., Zhang H., Silvester D. S., Banks C. E., Zou G., Hou H., Ji X., Mater. Today, 2021, 51, 188—207 |
72 | Ding Z., Miao Z., Xie Z., Liu J., J. Mater. Chem. A, 2016, 4(7), 2413—2418 |
73 | Xu H., Zhang L., Ding Z., Hu J., Liu J., Liu Y., Nano Res., 2018, 11, 4293—4301 |
74 | Zhang R., Zhao M., Wang Z., Wang Z., Zhao B., Miao Y., Zhou Y., Wang H., Hao Y., Chen G., ACS Appl. Mater. Interfaces, 2018, 10(5), 4895—4903 |
75 | Zhao W., Yan L., Gu H., Li Z., Wang Y., Luo Q., Yang Y., Liu X., Wang H., Ma C., ACS Appl. Energy Mater., 2020, 3(11), 11388—11397 |
76 | Zhu Y., Dai C., Hao C., Guo H., Yan L., Colloid. Surface. A, 2022, 648, 129401 |
77 | Lin X., Yang Y., Nian L., Su H., Ou J., Yuan Z., Xie F., Hong W., Yu D., Zhang M., Nano Energy, 2016, 26, 216—223 |
78 | Zhang X., Liu C., Li Z., Guo J., Shen L., Guo W., Zhang L., Ruan S., Long Y., Chem. Eng. J., 2017, 315, 621—629 |
79 | Wang Y., Yan L., Ji G., Wang C., Gu H., Luo Q., Chen Q., Chen L., Yang Y., Ma C., ACS Appl. Mater., 2018, 11(2), 2243—2253 |
80 | Kang R., Park S., Jung Y. K., Lim D. C., Cha M. J., Seo J. H., Cho S., Adv. Energy Mater., 2018, 8(10), 1702165 |
81 | Juang T., Kao J., Wang J., Hsu S., Chen C., Adv. Mater. Interfaces, 2018, 5(10), 1800031 |
82 | Park S., Lee H., Park S. W., Kim T. E., Park S. H., Jung Y. K., Cho S., Curr. Appl Phys., 2021, 21, 140—146 |
83 | Nguyen D. C., Kim B. S., Oh G. H., Vu V. P., Kim S., Lee S. H., Synth. Met., 2023, 298, 117430 |
84 | Tafese B. N., Aga F. G., Ganesh T., Geffe C. A., Int. J. Energy Res., 2023, 2023(1), 8847653 |
85 | Li Z., Zhang X., Liu C., Guo J., Cui H., Shen L., Guo W., ACS Appl. Mater. Interfaces, 2018, 10(46), 40255—40264 |
[1] | 刘钰鹏, 杨钧翔, 郝一鸣, 曲松楠. 近红外吸收/发光碳点的研究进展[J]. 高等学校化学学报, 2025, 46(6): 20240070. |
[2] | 刘翼泽, 李鹏飞, 孙再成. 碳点发光机制与结构之间的构效关系[J]. 高等学校化学学报, 2025, 46(6): 20250103. |
[3] | 杨春圆, 陈昊, 张攀, 李府赪, 袁伟雄, 郭佳壮, 王彩凤, 陈苏. 绿色荧光碳点的合成、 荧光机制和图案化[J]. 高等学校化学学报, 2025, 46(6): 20250093. |
[4] | 李丹, 胡鸿辉, 侯红帅, 张生, 刘立杰, 景明俊, 吴天景. 碳点调控混合相钛酸钠的储钠性能[J]. 高等学校化学学报, 2025, 46(6): 20240356. |
[5] | 陈奇丹, 陈冠吉, 游善媚, 臧欣瑶, 杨柏. 可用于防晒吸收剂的广谱抗紫外碳点的制备[J]. 高等学校化学学报, 2025, 46(6): 20240313. |
[6] | 刘金坤, 冉准, 刘青青, 刘应亮, 庄健乐, 胡超凡. 前驱体结构调控策略制备碳点基多色室温磷光材料[J]. 高等学校化学学报, 2025, 46(6): 20240412. |
[7] | 庞娥, 唐垣钰, 赵少静, 程强, 王晨, 陈健敏, 蓝敏焕. 乏氧激活化疗药物AQ4N与碳点自组装用于化疗联合声动力治疗肿瘤[J]. 高等学校化学学报, 2025, 46(6): 20240489. |
[8] | 倪佳文, 黄遵辉, 宋天兵, 马千里, 何天乐, 张熙荣, 熊焕明. 利用固相合成的硼掺杂碳点调控锂负极的有序沉积[J]. 高等学校化学学报, 2025, 46(6): 20240185. |
[9] | 李燕, 蔡皓, 毕红. 抗氧化碳点用于对乙酰氨基苯酚诱导的急性肝损伤的改善[J]. 高等学校化学学报, 2025, 46(6): 20240130. |
[10] | 李逢时, 蒋凯, 童鑫园, 武永健, 林恒伟. 硼掺杂控制陷阱密度及能级实现碳点的余辉寿命调控与动态信息加密应用[J]. 高等学校化学学报, 2025, 46(6): 20240545. |
[11] | 王长莹, 张大伟, 陈冠吉, 张镇威, 萧卫泓, 王斌, 陈奇丹, 杨柏. 碳点发光标记材料的制备及在水样中亚硝酸盐专一检测中的应用[J]. 高等学校化学学报, 2025, 46(6): 20240519. |
[12] | 潘卓涵, 艾琳, 卢思宇. 固态发光碳点的发光机理、 合成与应用研究进展[J]. 高等学校化学学报, 2025, 46(6): 20250081. |
[13] | 江霆杰, 曹珏然, 姚胜峰, 宋健, 李娜, 陈永颖, 李唯, 张浩然, 雷炳富. 菠菜基水溶红色荧光碳点的微波合成及Pb2+荧光检测性能[J]. 高等学校化学学报, 2025, 46(6): 20250082. |
[14] | 郭丹, 黄耿鸿, 白惠洁, 王亚玲, 曹广群, 刘斌, 胡胜亮. 高荧光量子产率的CO2衍生红光碳点的制备及应用[J]. 高等学校化学学报, 2025, 46(6): 20250091. |
[15] | 薛小矿, 李建, 梁焕仪, 王一颖, 葛介超. 红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗[J]. 高等学校化学学报, 2025, 46(6): 20250094. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||