高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6): 20250081.doi: 10.7503/cjcu20250081
收稿日期:
2025-03-31
出版日期:
2025-06-10
发布日期:
2025-04-16
通讯作者:
卢思宇
E-mail:chaofenzi2015@163.com;sylu2013@zzu.edu.cn
作者简介:
艾 琳, 女, 博士, 副教授, 主要从事碳化聚合物点的表面修饰与二维组装方面的研究. E-mail: chaofenzi2015@163.com
基金资助:
PAN Zhuohan, AI Lin(), LU Siyu(
)
Received:
2025-03-31
Online:
2025-06-10
Published:
2025-04-16
Contact:
LU Siyu
E-mail:chaofenzi2015@163.com;sylu2013@zzu.edu.cn
Supported by:
摘要:
碳点(CDs)作为一种光学性能优异的零维碳纳米材料, 在光电器件及生物成像等领域得到了广泛的应用. 然而, 固态CDs由于聚集造成的共振能量转移和π-π堆积会导致固态发光猝灭, 极大阻碍了其在荧光粉或固态照明等方面的应用. 因此, 研究人员探索了多种获得固态发光CDs的方式. 本文综合评述了CDs固态发光的机理和现阶段常用的合成策略, 介绍了固态发光CDs最新的应用领域,
中图分类号:
TrendMD:
潘卓涵, 艾琳, 卢思宇. 固态发光碳点的发光机理、 合成与应用研究进展. 高等学校化学学报, 2025, 46(6): 20250081.
PAN Zhuohan, AI Lin, LU Siyu. Research Progress on the Mechanism, Synthesis and Application of Solid-state Luminescent Carbon Dots. Chem. J. Chinese Universities, 2025, 46(6): 20250081.
Fig.2 Surface functional groups of CDs(A)[19], element doping of CDs(B)[20] and electrochemical methods to regulate PL for the functionalization of the surface of CDs(C)[21](A) Copyright 2023, American Chemical Society; (B) Copyright 2014, the Royal Society of Chemistry; (C) Copyright 2023, the Royal Society of Chemistry.
Fig.3 Molecular state emission of IPCA(A)[24] and 2⁃(dimethylamino) phenazine(B)[25](A) Copyright 2024, John Wiley & Sons, Inc.; (B) Copyright 2023, John Wiley & Sons, Inc.
Fig.4 Controlling the degree of crosslinking by the molecular structure of the precursor(A)[27] and the coating matrix(B)[28](A) Copyright 2022, Springer Nature; (B) Copyright 2022, John Wiley & Sons, Inc.
Fig.5 Synthesis of AIE CDs using DTSA(A)[38], piperazine and trimellitic acid(B)[39], oPD and PMDA(C)[40] as diverse precursors(A) Copyright 2019, Springer Nature; (B) Copyright 2023, John Wiley & Sons, Inc.; (C) Copyright 2023, Elsevier.
Fig.6 Synthesis of SSF CDs coated with PVK(A)[42], cyanuric acid(B)[43], boric acid(C)[44], SiO2(D)[45], ZIF⁃8(E)[46] and inorganic salt(F)[47] matrix(A) Copyright 2021, John Wiley & Sons, Inc.; (B) Copyright 2025, John Wiley & Sons, Inc.; (C) Copyright 2024, John Wiley & Sons, Inc.; (D) Copyright 2025, Elsevier; (E) Copyright 2024, Elsevier; (F) Copyright 2021, American Chemical Society.
Fig.7 Synthesis of SSF CDs by multicolor solid⁃state luminescent CDs(A)[48], heteroatom doping(B)[49] and regulation of surface ligand configuration(C)[50](A) Copyright 2022, John Wiley & Sons, Inc.; (B) Copyright 2021, Elsevier; (C) Copyright 2023, John Wiley & Sons, Inc.
Fig.9 Synthesis of RTP CDs from different matricesMatrix: (A) Boric acid[52]; (B) SiO2[53]; (C) NaOH[54]; (D) urea[55]. (A) Copyright 2025, Elsevier; (B) Copyright 2024, Elsevier; (C) Copyright 2023, John Wiley & Sons, Inc.; (D) Copyright 2024, John Wiley & Sons, Inc.
Fig.10 Composite matrix(A)[56] and multiple functional groups(B)[57] provide multiple confinement effects to synthesize RTP CDs(A) Copyright 2024, American Chemical Society; (B) Copyright 2025, Elsevier.
Fig.11 “Top⁃down” method to adjust the content of the receptor functional group(A)[60] and the degree of oxidation of the surface functional group(B)[61] and “Bottom⁃Up” method for heteroatom doping(C)[62] and conjugate rigid structure(D)[63] to obtain TADF CDs(A) Copyright 2024, Elsevier; (B) Copyright 2022, John Wiley & Sons, Inc.; (C) Copyright 2025, John Wiley & Sons, Inc.; (D) Copyright 2022, American Chemical Society.
Fig.12 CDs fluorescent inks for anti⁃counterfeiting printing(A)[36], time⁃resolved phosphorescent CDs(B)[64] and temperature⁃responsive CDs(C)[65] for information encryption(A) Copyright 2024, Springer Nature; (B) Copyright 2025, John Wiley & Sons, Inc.; (C) Copyright 2024, John Wiley & Sons, Inc.
Fig.13 CDs for photoluminescent LEDs(A)[66], electroluminescent LEDs(B)[67] and RTP CDs for emergency indicators(C)[68](A) Copyright 2022, Elsevier; (B) Copyright 2024, John Wiley & Sons, Inc.; (C) Copyright 2022, Springer Nature.
Fig.14 Ultraviolet CDs(A)[69] and Red CDs(B)[48] for planting LED(A) Copyright 2022, John Wiley & Sons, Inc.; (B) Copyright 2022, John Wiley & Sons, Inc.
Fig.16 AIE CDs for zebrafish imaging(A)[72], RTP CDs for in vivo imaging(B)[55] and long afterglow CDs(C)[73] for in vivo imaging in mice(A) Copyright 2024, Elsevier; (B) Copyright 2024, John Wiley & Sons, Inc.; (C) Copyright 2024, Springer Nature.
1 | Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126, 12736—12737 |
2 | Wang B., Lu S., Matter, 2022, 5, 110—149 |
3 | Wang B., Cai H., Waterhouse G. I. N., Qu X., Yang B., Lu S., Small. Sci., 2022, 2, 2200012 |
4 | Shi Y., Su W., Yuan F., Yuan T., Song X., Han Y., Wei S., Zhang Y., Li Y., Li X., Fan L., Adv. Mater., 2023, 35, 2210699 |
5 | Zhang Y., Song H., Wang L., Yu J., Wang B., Hu Y., Zang S., Yang B., Lu S., Angew. Chem. Int. Ed., 2021, 60, 25514—25521 |
6 | Liu H., Zhong X., Pan Q., Zhang Y., Deng W., Zou G., Hou H., Ji X., Coord. Chem. Rev., 2024, 498, 215468 |
7 | Sun Y., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., Xie S., J. Am. Chem. Soc., 2006, 128, 7756—7757 |
8 | Zhou J., Booker C., Li R., Zhou X., Sham T., Sun X., Ding Z., J. Am. Chem. Soc., 2007, 129, 744—745 |
9 | Yao X., Lewis R. E., Haynes C. L., Acc. Chem. Res., 2022, 55, 3312—3321 |
10 | Wang H., Wang B., Bai J., Lu S., J. Mater. Chem. A., 2024, 12, 22417—22441 |
11 | Wang B., Wei Z., Sui L., Yu J., Zhang B., Wang X., Feng S., Song H., Yong X., Tian Y., Yang B., Lu S., Light Sci. Appl., 2022, 11, 172 |
12 | Shi L., Wang B., Lu S., Matter, 2023, 6, 728—760 |
13 | Zhu S., Song Y., Zhao X., Shao J., Zhang J., Yang B., Nano Res., 2015, 8, 355—381 |
14 | Wang Y., Li X., Zhao S., Wang B., Song X., Xiao J., Lan M., Coord. Chem. Rev., 2022, 470, 214703 |
15 | Xian Y., Li K., Adv. Mater., 2022, 34, 2201031 |
16 | Hu G., Wang Y., Zhang S., Ding H., Zhou Z., Wei J., Li X., Xiong H., Carbon, 2023, 203, 1—10 |
17 | Liu Z., Zou H., Wang N., Yang T., Peng Z., Wang J., Li N., Huang C., Sci. Chi. Chem., 2018, 61, 490—496 |
18 | Bao L., Liu C., Zhang Z., Pang D., Adv. Mater., 2015, 27, 1663—1667 |
19 | Liu T., Yin G., Song Z., Yu J., Yong X., Zhang B., Ai L., Lu S., ACS Mater. Lett., 2023, 5, 846—853 |
20 | Yang S., Sun J., Li X., Zhou W., Wang Z., He P., Ding G., Xie X., Kang Z., Jiang M., J. Mater. Chem. A., 2014, 2, 8660—8667 |
21 | Zhao Q., Wang X., Song Q., Zang Z., Fan C., Li L., Yu X., Lu Z., Zhang X., J. Mater. Chem. C, 2023, 11, 14439—14447 |
22 | Shan F., Zhang J., Liao C., Wang Z., Wang L., Chin. Chem. Lett., 2023, 34, 108107 |
23 | He C., Xu P., Zhang X., Long W., Carbon, 2022, 186, 91—127 |
24 | Li R., Tao S., Liu J., Han X., Xia C., Yang B., Small Struct., 2024, 6, 2400447 |
25 | Zheng M., Jia H., Zhao B., Zhang C., Dang Q., Ma H., Xu K., Tan Z., Small, 2023, 19, 2206715 |
26 | Zheng C., Tao S., Yang B., Small Struct., 2023, 4, 2200327 |
27 | Tao S., Zhou C., Kang C., Zhu S., Feng T., Zhang S., Ding Z., Zheng C., Xia C., Yang B., Light Sci. Appl., 2022, 11, 56 |
28 | Wang B., Sun Z., Yu J., Waterhouse G. I. N., Lu S., Yang B., SmartMat, 2022, 3, 337—348 |
29 | Luo J., Xie Z., Lam J. W. Y., Cheng L., Chen H., Qiu C., Kwok H. S., Zhan X., Liu Y., Zhu D., Tang B. Z., Chem. Commu., 2001, 1740—1741 |
30 | Wang X., Wan R., Tang Y., Sun S., Chen H., Li L., Chen J., Wei J., Chi Z., Li H., Coord. Chem. Rev., 2025, 531, 216520 |
31 | Hu R., Leung N. L. C., Tang B., Chem. Soc. Rev., 2014, 43, 4494—4562 |
32 | Wang H., Zhao E., Lam J. W. Y., Tang B., Mater. Today, 2015, 18, 365—377 |
33 | Ding L., Jin X., Gao Y., Wu J., Ai T., Zhou H., Chen X., Zhang X., Chen W., Adv. Opt. Mater., 2023, 11, 2202349 |
34 | Wang Y., Zhou S., Pan S., Sun X., Zhou J., Li H., Adv. Opt. Mater., 2024, 12, 2301486 |
35 | Ding L., Jin X., Gao Y., Kang S., Bai H., Ma X., Ai T., Zhou H., Chen W., Adv. Sci., 2024, 11, 2409345 |
36 | Ding L., Jin X., Gao Y., Kang S., Bai H., Ma X., Ai T., Zhou H., Chen W., Nano Res., 2024, 17, 5680—5687 |
37 | Yang C., Hu J., Tan W., Si J., Hou X., Adv. Opt. Mater., 2025, 13, 2402638 |
38 | Yang H., Liu Y., Guo Z., Lei B., Zhuang J., Zhang X., Liu Z., Hu C., Nat. Commun., 2019, 10, 1789 |
39 | Wan Z., Li Y., Zhou Y., Peng D., Zhang X., Zhuang J., Lei B., Liu Y., Hu C., Adv. Funct. Mater., 2023, 33, 2207296 |
40 | Ding H., Zhao R., Zhang Z., Yang J., Wang Z., Xiao L., Li X., He X., Xiong H., Chem. Eng. J., 2023, 476, 146405 |
41 | Dos Santos J. M., Hall D., Basumatary B., Bryden M., Chen D., Choudhary P., Comerford T., Crovini E., Danos A., de J., Diesing S., Fatahi M., Griffin M., Gupta A. K., Hafeez H., Hämmerling L., Hanover E., Haug J., Heil T., Karthik D., Kumar S., Lee O., Li H., Lucas F., Mackenzie C. F. R., Mariko A., Matulaitis T., Millward F., Olivier Y., Qi Q., Samuel I. D. W., Sharma N., Si C., Spierling L., Sudhakar P., Sun D., Tankelevičiu̅tė E., Duarte Tonet M., Wang J., Wang T., Wu S., Xu Y., Zhang L., Zysman⁃Colman E., Chem. Rev., 2024, 124, 13736—14110 |
42 | Wang Z., Jiang N., Liu M., Zhang R., Huang F., Chen D., Small, 2021, 17, 2104551 |
43 | Wang L., Wang X., Zhao H., Adv. Funct. Mater., 2025, 10.1002/adfm.202423422 |
44 | Wang L., Liu G., Wang M., Song Y., Jing Q., Zhao H., Small, 2024, 20, 2401812 |
45 | Li J., Zheng S., Zhao X., Vomiero A., Gong X., Nano Energy, 2025, 134, 110514 |
46 | Wang Z., Yan L., Hao Y., Zheng J., Yang Y., Liu X., Chin. Chem. Lett., 2024, 35, 109430 |
47 | Zhao Y., He B., Liu E., Li J., Wang L., Chen S., Chen Y., Tan Z. A., Ng K. W., Wang S., Tang Z., Qu S., J. Phys. Chem. Lett., 2021, 12, 4530—4536 |
48 | Xu B., Li J., Zhang J., Ning H., Fang X., Shen J., Zhou H., Jiang T., Gao Z., Meng X., Wang Z., Adv. Sci., 2023, 10, 2205788 |
49 | Ding H., Xu J., Jiang L., Dong C., Meng Q., Rehman S. U., Wang J., Ge Z., Osipov V. Y., Bi H., Chin. Chem. Lett., 2021, 32, 3646—3651 |
50 | Ai L., Song Z., Nie M., Yu J., Liu F., Song H., Zhang B., Waterhouse G. I. N., Lu S., Angew. Chem. Int. Ed., 2023, 62, 202217822 |
51 | Shi H., Niu Z., Wang H., Ye W., Xi K., Huang X., Wang H., Liu Y., Lin H., Shi H., An Z., Chem. Sci., 2022, 13, 4406—4412 |
52 | You M., Li C., Zhang Z., Zhang Y., Li W., Zhang X., Zhuang J., Hu C., Dong H., Liu Y., Lei B., Zheng M., Chem. Eng. J., 2025, 505, 159246 |
53 | Luo Y., Jiang Q., Liu J., Huang F., Liao X., Zhuang J., Hu C., Zheng M., Lei B., Liu Y., He J., Chem. Eng. J., 2024, 500, 156781 |
54 | Ding Z., Shen C., Han J., Zheng G., Ni Q., Song R., Liu K., Zang J., Dong L., Lou Q., Shan C. X., Small, 2023, 19, 2205916 |
55 | Ai L., Xiang W., Xiao J., Liu H., Yu J., Zhang L., Wu X., Qu X., Lu S., Adv. Mater., 2024, 36, 2401220 |
56 | Zhu J., Li C., Zhu Y., Hu J., Nan Y., Chen X., Liu K., Wang H., Shan C., Xu W., Lou Q., Nano Lett., 2024, 24, 13307—13314 |
57 | Ahmed N., Abbas A., Qamar T. H., Hassan S. U., Jamali S. B., Deng L., J. Alloys Compd., 2025, 1013, 178586 |
58 | Liu Z., Meng L., Jiang Y., Li C., Gu H., Zhao K., Zhang J., Meng H., Ren Y., J. Am. Chem. Soc., 2025, 147, 3650—3661 |
59 | Zhang B., Li C., Wang H., Fang H., Feng R., Yu M., Li W., Chang Z., Bu X., Angew. Chem. Int. Ed., 2025, 10.1002/anie.202424593 |
60 | Zhao Q., Fan C., Bu H., Gao J., Li L., Yu X., Yang X., Lu Z., Zhang X., Chem. Eng. J., 2024, 500, 156704 |
61 | Park M., Kim H. S., Yoon H., Kim J., Lee S., Yoo S., Jeon S., Adv. Mater., 2020, 32, 2000936 |
62 | Xin M., Chen X., Zhang L., Yang H., Guo D., Hu Y., Small, 2025, 21, 2407170 |
63 | Sun X., He W., Liu B., J. Phys. Chem. C., 2022, 126, 3540—3548 |
64 | Zhang Y., Liu Y., Ren X., Kang Y., Ding S., Lu S., Angew. Chem. Int. Ed., 2025, 64, e202421421 |
65 | Liu Y., Cheng D., Wang B., Yang J., Hao Y., Tan J., Li Q., Qu S., Adv. Mater., 2024, 36, 2403775 |
66 | Wang J., Zheng J., Yang Y., Liu X., Qiu J., Tian Y., Carbon, 2022, 190, 22—31 |
67 | Wang B., Wang H., Zhang B., Hu Y., Lu S., Adv. Funct. Mater., 2024, 34, 2404437 |
68 | Jiang K., Wang Y., Lin C., Zheng L., Du J., Zhuang Y., Xie R., Li Z., Lin H., Light Sci. Appl., 2022, 11, 80 |
69 | Xu J., Liang Q., Li Z., Osipov V. Y., Lin Y., Ge B., Xu Q., Zhu J., Bi H., Adv. Mater., 2022, 34, 2200011 |
70 | Weber W. H., Lambe J., Appl. Opt., 1976, 15, 2299—2300 |
71 | Wu J., Li Y., Qin H., Gao Y., Yang B., Sheng J., Zhang X., Chem. Res. Chin.ese Universities, 2024, 40(1), 145—152 |
72 | Kou X., Cong Y., Dong W., Li L., Mater. Des., 2024, 240, 112855 |
73 | Zheng G., Shen C., Niu C., Lou Q., Jiang T., Li P., Shi X., Song R., Deng Y., Lv C., Liu K., Zang J., Cheng Z., Dong L., Shan C., Nat. Commun., 2024, 15, 2365 |
74 | Song S., Liu K., Cao Q., Mao X., Zhao W., Wang Y., Liang Y., Zang J., Lou Q., Dong L., Shan C., Light Sci. Appl., 2022, 11, 146 |
75 | Geng B., Hu J., Li Y., Feng S., Pan D., Feng L, Shen L., Nat. Commun., 2022, 13, 5735 |
[1] | 刘瀛琪, 王叶梅, 蒋恺, 郑芬芬, 朱俊杰. 基于细胞衍生荧光碳点的葡萄糖比色及荧光测定[J]. 高等学校化学学报, 2025, 46(6): 20240386. |
[2] | 郝永梁, 李建, 王泽华, 葛介超. 基于红光碳点光敏剂的活性收缩水凝胶用于细菌感染的伤口愈合[J]. 高等学校化学学报, 2025, 46(6): 20240409. |
[3] | 王欣, 王宇, 穆富茂, 闫翎鹏, 王振国, 杨永珍. 碳点在有机太阳能电池界面工程中的应用与展望[J]. 高等学校化学学报, 2025, 46(6): 20240416. |
[4] | 赖晓南, 沈成龙, 单崇新. 基于聚集调控的多色碳纳米点荧光粉[J]. 高等学校化学学报, 2025, 46(6): 20240407. |
[5] | 刘金坤, 冉准, 刘青青, 刘应亮, 庄健乐, 胡超凡. 前驱体结构调控策略制备碳点基多色室温磷光材料[J]. 高等学校化学学报, 2025, 46(6): 20240412. |
[6] | 庞娥, 唐垣钰, 赵少静, 程强, 王晨, 陈健敏, 蓝敏焕. 乏氧激活化疗药物AQ4N与碳点自组装用于化疗联合声动力治疗肿瘤[J]. 高等学校化学学报, 2025, 46(6): 20240489. |
[7] | 刘钰鹏, 杨钧翔, 郝一鸣, 曲松楠. 近红外吸收/发光碳点的研究进展[J]. 高等学校化学学报, 2025, 46(6): 20240070. |
[8] | 江霆杰, 曹珏然, 姚胜峰, 宋健, 李娜, 陈永颖, 李唯, 张浩然, 雷炳富. 菠菜基水溶红色荧光碳点的微波合成及Pb2+荧光检测性能[J]. 高等学校化学学报, 2025, 46(6): 20250082. |
[9] | 郭丹, 黄耿鸿, 白惠洁, 王亚玲, 曹广群, 刘斌, 胡胜亮. 高荧光量子产率的CO2衍生红光碳点的制备及应用[J]. 高等学校化学学报, 2025, 46(6): 20250091. |
[10] | 薛小矿, 李建, 梁焕仪, 王一颖, 葛介超. 红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗[J]. 高等学校化学学报, 2025, 46(6): 20250094. |
[11] | 李丹, 胡鸿辉, 侯红帅, 张生, 刘立杰, 景明俊, 吴天景. 碳点调控混合相钛酸钠的储钠性能[J]. 高等学校化学学报, 2025, 46(6): 20240356. |
[12] | 倪佳文, 黄遵辉, 宋天兵, 马千里, 何天乐, 张熙荣, 熊焕明. 利用固相合成的硼掺杂碳点调控锂负极的有序沉积[J]. 高等学校化学学报, 2025, 46(6): 20240185. |
[13] | 李燕, 蔡皓, 毕红. 抗氧化碳点用于对乙酰氨基苯酚诱导的急性肝损伤的改善[J]. 高等学校化学学报, 2025, 46(6): 20240130. |
[14] | 刘翼泽, 李鹏飞, 孙再成. 碳点发光机制与结构之间的构效关系[J]. 高等学校化学学报, 2025, 46(6): 20250103. |
[15] | 杨春圆, 陈昊, 张攀, 李府赪, 袁伟雄, 郭佳壮, 王彩凤, 陈苏. 绿色荧光碳点的合成、 荧光机制和图案化[J]. 高等学校化学学报, 2025, 46(6): 20250093. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||