高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (11): 20230268.doi: 10.7503/cjcu20230268

• 物理化学 • 上一篇    下一篇

高活性Cu-ZnO@SiO2纳米催化剂催化CO2加氢制甲醇

陈浩1, 陈桂2, 宋丹丹1, 曾艳红1, 刘文虎3(), 张明4()   

  1. 1.岳阳职业技术学院生物环境工程学院, 岳阳 414000
    2.怀化学院化学与材料工程学院, 怀化 418000
    3.湖南石油化工职业技术学院石化工程学院, 4. 机电工程学院, 岳阳 414000
  • 收稿日期:2023-06-05 出版日期:2023-11-10 发布日期:2023-08-04
  • 通讯作者: 刘文虎 E-mail:liuwenhu2023@163.com;ming84122023@163.com
  • 作者简介:张 明, 男, 学士, 讲师, 主要从事C1资源转化方面的研究. E-mail: ming84122023@163.com
  • 基金资助:
    湖南省自然科学基金(2023JJ50309)

High-performance Cu-ZnO@SiO2 Nano-catalyst for CO2 Hydrogenation to Methanol

CHEN Hao1, CHEN Gui2, SONG Dandan1, ZENG Yanhong1, LIU Wenhu3(), ZHANG Ming4()   

  1. 1.College of Bioligical and Environmental Engineering,Yueyang Vocational and Technical College,Yueyang 414000,China
    2.College of Chemistry and Materials Engineering,Huaihua University,Huaihua 418000,China
    3.College of Petrochemical Engineering
    4.College of Mechanical and Electrical Engineering,Hunan Petrochemical Vocational Technology College,Yueyang 414000,China
  • Received:2023-06-05 Online:2023-11-10 Published:2023-08-04
  • Contact: LIU Wenhu E-mail:liuwenhu2023@163.com;ming84122023@163.com
  • Supported by:
    the Natural Science Foundation of Hunan Province, China(2023JJ50309)

摘要:

铜基催化剂可被广泛应用于CO2加氢制甲醇, 其催化活性高度依赖载体. 本文通过Stöber法合成了SiO2纳米微球, 将其作为载体制备了Cu-ZnO@SiO2催化剂; 将该催化剂应用于CO2加氢制甲醇, 并与常规共沉淀法制备的Cu-ZnO催化剂进行了对比. 通过X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 X射线光电子能谱(XPS)、 氢气程序升温还原(H2-TPR)和二氧化碳程序升温脱附(CO2-TPD)等手段对催化剂进行了表征. 结果表明, Cu-ZnO@SiO2催化剂具有更高的Cu分散性和CO2吸附能力, SiO2的加入提高了催化剂表面Cu+/Cu0的比例, 从而影响了催化性能. 研究发现, 在H2/CO2摩尔比为3, 230 ℃, 2.0 MPa和气体体积空速为3600 mL·gcat-1·h-1条件下, Cu-ZnO@SiO2催化剂具有更高的催化活性(甲醇选择性88.2%, 甲醇收率11.1%), 远高于Cu-ZnO催化剂(甲醇选择性36.5%, 甲醇收率6.9%). 原位红外光谱(DRIFT)分析表明, CO2在Cu-ZnO@SiO2催化剂上主要通过RWGS+CO加氢路径生成甲醇.

关键词: 催化剂, 二氧化碳加氢, 甲醇

Abstract:

Cu-based catalysts are widely employed for CO2 hydrogenation to methanol. However, their catalytic performance highly depends on supports. Herein, the nano-spherical SiO2 support was synthesized by the Stöber method and used as a component in Cu-ZnO@SiO2 catalyst. The catalyst was tested in hydrogenation of CO2 to methanol and compared with the Cu-ZnO catalyst(6.9% yield of methanol and 36.5% selectivity of methanol) prepared via conventional coprecipitation process. It was found that Cu-ZnO@SiO2 catalyst exhibits the best catalytic performance, the yield of methanol reached 11.1% with 88.2% selectivity of methanol at n(H2)/n(CO2)=3,230 ℃, 2.0 MPa and gaseous hourly space velocity(GHSV)=3600 mL·gcat-1·h-1. The catalysts were thoroughly characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS), tempera-ture-programmed reduction(H2-TPR) and CO2 temperature-programmed desorption(CO2-TPD). The results show that Cu-ZnO@SiO2 catalyst has higher Cu dispersion and CO2 adsorption capacity, and the addition of SiO2 increases the Cu+/Cu0 molar ratio on the catalyst surface, which affects the catalytic performance. The characterization analysis of Diffuse reflectance fourier transform infrared spectroscopy(DRIFT) showed that CO2 generated methanol on Cu-ZnO@SiO2 catalyst mainly through reverse water gas reaction(RWGS)+CO hydrogenation path.

Key words: Catalyst, CO2 hydrogenation, Methanol

中图分类号: 

TrendMD: