高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (1): 20210575.doi: 10.7503/cjcu20210575
收稿日期:
2021-08-16
出版日期:
2022-01-10
发布日期:
2021-09-22
通讯作者:
陈玉贞,江海龙
E-mail:chenzhen1738@163.com;jianglab@uste.edu.cn
基金资助:
LI Shurong1, WANG Lin1, CHEN Yuzhen1(), JIANG Hailong2(
)
Received:
2021-08-16
Online:
2022-01-10
Published:
2021-09-22
Contact:
CHEN Yuzhen,JIANG Hailong
E-mail:chenzhen1738@163.com;jianglab@uste.edu.cn
Supported by:
摘要:
金属-有机框架(MOFs)材料是由金属簇节点或金属离子与有机配体连接而成的典型的无机-有机杂合物, 作为一类新兴的无机多孔晶态材料, MOFs因具有高度有序的多孔性、 结构可裁剪性、 高比表面积及灵活多变的骨架类型等优点而在工业合成、 能源开发、 环境治理和生物制药等领域展现出广阔的应用前景. 本文从氢能源的开发利用出发, 总结了近年来MOFs基纳米复合材料在催化化学制氢方面的研究进展. 讨论了常见的含氢量高的化学储氢材料, 包括氨硼烷、 甲酸和水合肼等; 催化材料主要有单一MOFs、 MOF基贵金属和非贵金属复合材料及MOF基衍生材料等. 最后, 对MOF基复合材料在液相催化化学储氢中的应用前景进行了展望.
中图分类号:
TrendMD:
李淑蓉, 王琳, 陈玉贞, 江海龙. 金属-有机框架材料在液相催化化学制氢中的研究进展. 高等学校化学学报, 2022, 43(1): 20210575.
LI Shurong, WANG Lin, CHEN Yuzhen, JIANG Hailong. Research Progress of Metal⁃organic Frameworks on Liquid Phase Catalytic Chemical Hydrogen Production. Chem. J. Chinese Universities, 2022, 43(1): 20210575.
Entry | Catalyst | Hydrogen storage material | TOF/ (molH2·molc a t- 1·min-1) | Ref. |
---|---|---|---|---|
1 | CuNi?MOFs | NH3BH3 | 40.85 | [ |
2 | Ru@MIL?53(Al) | NH3BH3 | 266.9 | [ |
3 | Ru/MIL?53(Al)?NH2 | NH3BH3 | 287.0 | [ |
4 | AgPd@UIO?66?NH2 | NH3BH3 | 90.0 | [ |
5 | AuNi@MIL?101 | NH3BH3 | 66.2 | [ |
6 | AuCo@MIL?101 | NH3BH3 | 23.5 | [ |
7 | NiRu@MIL?101 | NH3BH3 | 272.7 | [ |
8 | Pd@Co@MIL?101 | NH3BH3 | 51.0 | [ |
9 | AgNi/MIL?101 | NH3BH3 | 20.2 | [ |
10 | Ni2Pt@ZIF?8 | NH3BH3 | 361 | [ |
11 | Rh15Ni85@ZIF?8 | NH3BH3 | 58.8 | [ |
12 | RuCuCo@MIL?101 | NH3BH3 | 241.2* | [ |
13 | 4?PySI?Pd@Cu(BDC) | HCOOH | 6.9 | [ |
14 | AuPd?MnOx/ZIF?8?rGO | HCOOH | 6.4 | [ |
15 | 10% Ni0.4Pd0.6/MOF?Cr | HCOOH | 12.3 | [ |
16 | RhNi/MIL?101 | N2H4BH3 | 20.0 | [ |
17 | Ni0.36Fe0.24Pd0.4/MIL?101 | N2H4·H2O | 7.1 | [ |
N2H4BH3 | 1.0 | |||
N2H4·H2O | 0.7 | |||
18 | NiPt NPs/MIL?101?NH2 | N2H4·H2O | 2.3 | [ |
19 | Ni NPs/ZIF?8 | NH3BH3 | 85.7 | [ |
20 | Cu0.5@Co0.5?MOF/5 | NH3BH3 | 129.8 | [ |
21 | Cu6Fe0.8Co3.2@MIL?101 | NH3BH3 | 23.2 | [ |
22 | CuCo(O)@CN | NH3BH3 | 12.4 | [ |
23 | CoP@CNFs | NH3BH3 | 165.5 | [ |
24 | Co/HPC | NH3BH3 | 2.9 | [ |
25 | 10%?CoNi/HPC?400 | NH3BH3 | 27.2 | [ |
26 | CoP@HPC?500 | NH3BH3 | 27.7 | [ |
27 | AgPd/MOF?5?C | HCOOH | 14.2 | [ |
Table 1 Recent reports in catalytic hydrogen production by MOF-based composites
Entry | Catalyst | Hydrogen storage material | TOF/ (molH2·molc a t- 1·min-1) | Ref. |
---|---|---|---|---|
1 | CuNi?MOFs | NH3BH3 | 40.85 | [ |
2 | Ru@MIL?53(Al) | NH3BH3 | 266.9 | [ |
3 | Ru/MIL?53(Al)?NH2 | NH3BH3 | 287.0 | [ |
4 | AgPd@UIO?66?NH2 | NH3BH3 | 90.0 | [ |
5 | AuNi@MIL?101 | NH3BH3 | 66.2 | [ |
6 | AuCo@MIL?101 | NH3BH3 | 23.5 | [ |
7 | NiRu@MIL?101 | NH3BH3 | 272.7 | [ |
8 | Pd@Co@MIL?101 | NH3BH3 | 51.0 | [ |
9 | AgNi/MIL?101 | NH3BH3 | 20.2 | [ |
10 | Ni2Pt@ZIF?8 | NH3BH3 | 361 | [ |
11 | Rh15Ni85@ZIF?8 | NH3BH3 | 58.8 | [ |
12 | RuCuCo@MIL?101 | NH3BH3 | 241.2* | [ |
13 | 4?PySI?Pd@Cu(BDC) | HCOOH | 6.9 | [ |
14 | AuPd?MnOx/ZIF?8?rGO | HCOOH | 6.4 | [ |
15 | 10% Ni0.4Pd0.6/MOF?Cr | HCOOH | 12.3 | [ |
16 | RhNi/MIL?101 | N2H4BH3 | 20.0 | [ |
17 | Ni0.36Fe0.24Pd0.4/MIL?101 | N2H4·H2O | 7.1 | [ |
N2H4BH3 | 1.0 | |||
N2H4·H2O | 0.7 | |||
18 | NiPt NPs/MIL?101?NH2 | N2H4·H2O | 2.3 | [ |
19 | Ni NPs/ZIF?8 | NH3BH3 | 85.7 | [ |
20 | Cu0.5@Co0.5?MOF/5 | NH3BH3 | 129.8 | [ |
21 | Cu6Fe0.8Co3.2@MIL?101 | NH3BH3 | 23.2 | [ |
22 | CuCo(O)@CN | NH3BH3 | 12.4 | [ |
23 | CoP@CNFs | NH3BH3 | 165.5 | [ |
24 | Co/HPC | NH3BH3 | 2.9 | [ |
25 | 10%?CoNi/HPC?400 | NH3BH3 | 27.2 | [ |
26 | CoP@HPC?500 | NH3BH3 | 27.7 | [ |
27 | AgPd/MOF?5?C | HCOOH | 14.2 | [ |
Fig.1 Schematic representation of immobilization of the AuNi nanoparticles by the MIL?101 matrix using the DSM combined with a liquid?phase CCR strategy[39]Copyright 2013, American Chemical Society.
Fig.3 Schematic representation of synthesis and application of AgPd@MIL?100(Fe) core?shell NPs for FA decomposition at 298 K[67]Copyright 2015, the Royal Society of Chemistry.
Fig.7 Schematic illustration for the oriented growth of Cu2O@HKUST?1 and random growth of Cu2O/HKUST?1 composites(A), Cu2O@HKUST?1 reduce to Cu NCs@HKUST?1 and synthesis of aromatic imines through hydrogenation of nitrobenzene and reductive amination of benzaldehyde(B)[90]Copyright 2021, Wiley?VCH GmbH.
1 | Züttel A., Borgschulte A., Schlapbach L., Hydrogen as a Future Energy Carrier, Wiley⁃VCH, Weinheim, 2008 |
2 | Manoharan Y., Hosseini S. E., Butler B., Alzhahrani H., Senior B. T. F., Ashuri T., Krohn J., Appl. Sci., 2019, 9(11), 2296 |
3 | Lang C., Jia Y., Yao X., Energy Storage Mater.,2020, 26, 290—312 |
4 | Navlani⁃García1 M., Mori K., Kuwahara Y., Yamashita H., NPG Asia Mater., 2018, 10, 277—292 |
5 | Jiang H. L., Xu Q., Catal. Today, 2011, 170(1), 56—63 |
6 | Jiang H. L., Singh S. K., Yan J. M., Zhang X. B. Xu Q., ChemSusChem, 2010, 3(5), 541—549 |
7 | Fellay C., Dyson P. J., Laurenczy G., Angew. Chem., 2008, 120(21), 4030—4032 |
8 | Zhang J., Kang Q., Yang Z., Dai H., Zhuang D., Wang P., J. Mater. Chem. A, 2013, 1, 11623—11628 |
9 | Yao Q. L., Du H. X., Lu Z. H., Prog. Chem., 2020, 32(12), 1930—1951(姚淇露, 杜红霞, 卢章辉. 化学进展, 2020, 32(12), 1930—1951) |
10 | Gong J., Li G., Tang Z., Nano Today, 2012, 7(6), 564—585 |
11 | Narayanan R., El⁃Sayed M. A., J. Am. Chem. Soc., 2003, 125, 8340—8347 |
12 | Gonzalez M. I., Turkiewicz A. B., Darago L. E., Oktawiec J., Bustillo K., Grandjean F., Long G. J., Long J. R., Nature, 2020, 577, 64—68 |
13 | Férey G., Mellot⁃Draznieks C., Serre C., Millange F., Acc. Chem. Res., 2005, 38(4), 217—225 |
14 | Zhou H. C., Kitagawa S., Chem. Soc. Rev., 2014, 43, 5415—5418 |
15 | Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112(2), 673—674 |
16 | Zhang J. P., Zhu A. X., Lin R. B., Qi X. L., Chen X. M., Adv. Mater.,2011, 23, 1268—1271 |
17 | Pang Q., Tu B., Li Q., Coord. Chem. Rev., 2019, 388, 107—125 |
18 | Shen K., Zhang L., Chen X., Liu L., Zhang D., Han Y., Chen J., Long J., Luque R., Li Y., Chen B., Science, 2018, 359, 206—210 |
19 | Hu Z. C., Deibert B. J., Li J., Chem. Soc. Rev., 2014, 43, 5815—5840 |
20 | Huang G., Chen Y. Z., Jiang H. L., Acta Chim. Sinica,2016, 74(2), 113—129(黄刚, 陈玉贞, 江海龙. 化学学报, 2016, 74(2), 113—129) |
21 | Jia J. T., Wang L., Zhao Q., Sun F. X., Zhu G. S., Acta Chim. Sinica,2013, 71(11), 1492—1495(贾江涛, 王蕾, 赵晴, 孙福兴, 朱广山. 化学学报, 2013, 71(11), 1492—1495) |
22 | Nash G. T., Luo T. K., Lan G. G., Ni K. Y., Kaufmann M., Lin W. B., J. Am. Chem. Soc., 2021, 143(5), 2194—2199 |
23 | Xiao Yi. H., Tian W. M., Jin S. Y., Gu Z. G., Zhang J., Small,2020, 16(45), 2005111 |
24 | Qin J. S., Yuan S., Zhang L., Li B., Du D. Y., Huang N., Guan W., Drake H. F., Pang J., Lan Y. Q., Alsalme A., Zhou H. C., J. Am. Chem. Soc., 2019, 141(5), 2054—2060 |
25 | Zhang Z. Q., Peh S. B., Krishna R., Kang C. J., Chai K. G., Wang Y. X., Shi D. C., Zhao D., Angew. Chem. Int. Ed., 2021, 60(31), 17198—17204 |
26 | Huang G., Yang L., Yin Q., Fang Z. B., Hu X. J., Zhang A. A., Jiang J., Liu T. F.,Cao R., Angew. Chem. Int. Ed., 2020, 59(11), 4385—4390 |
27 | Yu M. H., Space B., Franz D., Zhou W., He C., Li L., Krishna R., Chang Z., Li W., Hu T. L., Bu X. H., J. Am. Chem. Soc., 2019, 141(44), 17703—17712 |
28 | Zhou G., Wang B., Cao R., J. Am. Chem. Soc., 2020, 142(35), 14848—14853 |
29 | He P. C., Zhou J., Zhou A W., Dou Y. B., Li J. R., Chem. J. Chinese Universities, 2019, 40(5), 855—866(何鹏琛, 周健, 周阿武, 豆义波, 李建荣. 高等学校化学学报, 2019, 40(5), 855—866) |
30 | Xia Y. P., Wang C. X., Zheng J. Y., Li N., Chang Z., Bu X. H., Chem. J. Chinese Universities, 2020, 41(11), 2415—2420(夏雨沛, 王晨雪, 郑金玉, 李娜, 常泽, 卜显和. 高等学校化学学报, 2020, 41(11), 2415—2420) |
31 | Xiang W. L., Zhang Y. P., Lin H. F., Liu C. J., Molecules, 2017, 22(12), 2103 |
32 | Zhang Y. P., Zhou Y., Zhao Y., Liu C. J., Catal. Today, 2016, 263, 61—68 |
33 | Shen K., Chen X. D., Chen J. Y., Li Y. W., ACS Catal., 2016, 6(9), 5887—5903 |
34 | Zhang Y. F., Qiu L. G., Yuan Y. P., Zhu Y. J., Jiang X., Xiao J. D., Appl. Catal. B: Environ., 2014, 144, 863—869 |
35 | Lia Y. T., Ullah S., Han Z., Zheng X. C., Zheng G. P., Catal. Commun., 2020, 143, 106057 |
36 | Yang K. Z., Zhou L. Q., Yu G. F., Xiong X., Ye M. L., Li Y., Lu D., Pan Y. X., Chen M. H., Zhang L., Gao D. D., Wang Z., Liu H. Y., Xia Q. H., Int. J. Hydrogen Energ., 2016, 41(15), 6300—6309 |
37 | Zhang S. R., Zhou L. Q., Chen M. H., RSC Adv., 2018, 8(22), 12282—12291 |
38 | Shang N. Z., Feng C., Gao S. T., Wang C., Int. J. Hydrogen Energ., 2016, 41(2), 994—950 |
39 | Zhu Q. L., Li J., Xu Q., J. Am. Chem. Soc., 2013, 135(28), 10210—10213 |
40 | Li J., Zhu Q. L., Xu Q., Chem. Commun.,2014, 50(44), 5899—5901 |
41 | Roy S., Pachfule P., Xu Q., Eur. J. Inorg. Chem.,2016, 2016(27), 4353—4357 |
42 | Chen Y. Z., Xu Q., Yu S. H., Jiang H. L., Small, 2015, 11(1), 71—76 |
43 | Chen Y. Z., Liang L. F., Yang Q. H., Hong M. C., Xu Q., Yu S. H., Jiang H. L., Mater. Horiz.,2015, 2(6), 606—612 |
44 | Fu F.Y., Wang C. L., Wang Q., Martinez⁃Villacorta A. M., Escobar A., Chong H. B., Wang X., Moya S., Salmon L., Fouquet E., Ruiz J., Astruc D., J. Am. Chem. Soc., 2018, 140(31), 10034—10042 |
45 | Xia B. Q., Liu C., Wu H., Luo W., Cheng G. Z., Int. J. Hydrogen Energ., 2015, 40(46), 16391—16397 |
46 | Yang K. Z., Zhou L. Q., Xiong X., Ye M. L., Li L., Xia Q. H., Micropor. Mesopor. Mat., 2016, 225, 1—8 |
47 | Alamgholilooa H., Zhang S. B., Ahadia A., Rostamnia S., Banaeia R., Li Z. C., Liu X., Shokouhimehre M., Mol. Catal., 2019, 467, 30—37 |
48 | Yan J. M., Wang Z. L., Gu L., Li S. J., Wang H. L., Zheng W. T., Jiang Q. J., Adv. Energy Mater., 2015, 5(10), 1500107 |
49 | Ma C. J., Duan J. C., Fu Y., Chang J., Int. J. Hydrogen Energ.,2021, 46(7), 5259—5269 |
50 | Zhang Z. J., Zhang S. L., Yao Q. L., Feng G., Zhu M. H., Lu Z. H., Inorg. Chem. Front.,2018, 5,370—377 |
51 | Yang K., Yang K. K., Zhang S. L., Luo Y., Yao Q. L., Lu Z. H., J. Alloy. Compd., 2018,732, 363—371 |
52 | Liu P. L., Gu X. J., Wu Y. Y., Cheng J., Su H. Q., Int. J. Hydrogen Energ., 2017, 42(30), 19096—19105 |
53 | Wang C. L., Tuninetti J., Wang Z., Zhang C., Ciganda R., Salmon L., Moya S., Ruiz J., Astruc D., J. Am. Chem. Soc.,2017, 139(33), 11610—11615 |
54 | Xu W. J., Li W., Wen H., Ding J., Liu S. H., Li W., Li B. J., Appl. Catal. B: Environ., 2021, 286, 119946 |
55 | Li Y., Li S. F., Int. J. Hydrogen Energ., 2020, 45(17), 10433—10441 |
56 | Yuan Y., Chen X. Y., Zhang X., Wang Z. M., Yu R. B., Inorg. Chem. Front., 2020, 7, 2043—2049 |
57 | Hou C. C., Chen Q. Q., Li K., Wang C. J., Peng C. Y., Shi R., Chen Y., J. Mater. Chem. A, 2019, 7, 8277—8283 |
58 | Zhang X. L., Zhang D. X., Chang G. G., Ma X. C., Wu J., Wang Y., Yu H. Z., Tian G., Chen J., Yang X. Y., Ind. Eng. Chem. Res.,2019, 58(17), 7209—7216 |
59 | Chen M. J., Zhang D. X., Li D., Ke S. C., Ma X. C., Chang G. G., Chen J., Yang X. Y., New J. Chem., 2020, 44, 3021—3027 |
60 | Ma X. C., He Y. Y., Zhang D. X., Chen M. J., Ke S. C, Yin Y. X., Chang G. G., ChemistrySelect,2020, 5(7), 2190—2196 |
61 | Feng C., Wang Y., Gao S. T., Shang N. Z., Wang C., Catal. Commun.,2016, 78, 17—21 |
62 | Chung J. Y., Liao C. W., Chang Y. W., Chang B. K., Wang H., Li J., Wang C. Y., J. Phys. Chem. C, 2017, 121(49), 27369—27378 |
63 | Yang Q., Liu W., Wang B., Zhang W., Zeng X., Zhang C., Qin Y., Sun X., Wu T., Liu J, Huo F., Lu J., Nat. Commun., 2017, 8, 14429 |
64 | Chen Y. Z., Wang Z. U., Wang H., Lu J., Yu S. H., Jiang H. L., J. Am. Chem. Soc., 2017, 139(5), 2035—2044 |
65 | Matsuyama K., Motomura M., Kato T., Okuyama T., Muto H., Micropor. Mesopor. Mat., 2016, 225, 26—32 |
66 | Loges B., Boddien A., Junge H., Beller M., Angew. Chem. Int. Ed., 2008, 47(21), 3962—3965 |
67 | Ke F., Wang L. H., Zhu J. F., Nanoscale, 2015, 7, 8321—8325 |
68 | Zhang Z. J., Zhang S. L., Yao Q. L., Chen X. S., Lu Z. H., Inorg. Chem., 2017, 56(19), 11938—11945 |
69 | Jiang R., Qu X. P., Zeng F. N., Li Q., Zheng X., Xu Z. M., Peng J., Int. J. Hydrogen Energ., 2019, 44(13), 6383—6391 |
70 | Song X., Yang P., Wang J. C., Zhao X. C., Zhou Y. L., Li Y. T., Yang L. J., Inorg. Chem. Front.,2019, 6, 2727—2735 |
71 | Tan Y., Li Q., Lu Z., Yang C., Qian W., Yu F., J. Alloy Compd., 2021, 826, 159788 |
72 | Jiang H. L., Akita T., Xu Q., Chem. Commun., 2011, 47(39), 10999—11001 |
73 | Metin Ö., Mazumder V., Özkar S., Sun S., J. Am. Chem. Soc., 2010, 132(5), 1468—1469 |
74 | Wen M. C., Cui Y. W., Kuwahara Y., Mori K., Yamashita H., ACS Appl. Mater. Interfaces., 2016, 8(33), 21278—21284 |
75 | Li J., Zhu Q. L., Xu Q., Catal. Sci. Technol., 2015, 5, 525—530 |
76 | Liu P. L., Gu X. J., Kang K., Zhang H., Cheng J., Su H. Q., ACS Appl. Mater. Interfaces, 2017, 9(12), 10759—10767 |
77 | Wu H. B., Lou X. W., Sci. Adv., 2017, 3, eaap9252 |
78 | Zhu Z., Zhai Y., Li Z., Zhu P., Mao S., Zhu C., Du D., Belfiore L. A., Tang J., Lin Y., Mater. Today, 2019, 30, 52—79 |
79 | Pachfule P., Yang X. C., Zhu Q. L., Tsumori N., Uchida T., Xu Q., J. Mater. Chem. A, 2017, 5, 4835—4841 |
80 | Zhang H. H., Fan Y. P., Liu B. Z., Liu Y. Y., Ashraf S., Wu X. L., Han G. S., Gao J., Li B. J., ACS Sustainable Chem. Eng., 2019, 7(11), 9782—9792 |
81 | Zacho S. L., Mielbya J., Kegnæs S., Catal. Sci. Technol., 2018, 8, 4741—4746 |
82 | Qu X. P., Jiang R., Li Q., Zeng F. N., Zheng X., Xu Z. M., Chen C. H., Peng J., Green Chem., 2019, 21, 850—860 |
83 | Jiang R., Wang W. Z., Zheng X., Li Q., Xu Z. M., Peng J., Int. J. Hydrogen Energy, 2021, 46(7), 5345—5354 |
84 | Li X., Surkus A. E., Rabeah J., Anwar M., Dastigir S., Junge H., Brückner A., Beller M., Angew. Chem. Int. Ed., 2020, 59(37), 15849—15854 |
85 | Ma X., Zhou Y. X, Liu H., Li Y., Jiang H. L., Chem. Commun., 2016, 52(49), 7719—7722 |
86 | Liu Z., Dong W. H., Cheng S. S., Guo S., Shang N. Z., Gao S. T., Feng C., Wang C., Wang Z., Catal. Commun.,2017, 95, 50—53 |
87 | Yang Q., Chen Y. Z., Wang Z. U., Xu Q., Jiang H. L., Chem. Commun.,2015, 51(52), 10419—10422 |
88 | Zhou Y. H., Yang Q. H., Chen Y. Z., Jiang H. L., Chem. Commun., 2017, 53(91), 12361—12364 |
89 | Sun J. L., Chen Y. Z., Ge B. D., Li J. H., Wang G. M., ACS Appl. Mater. Interfaces, 2019, 11(1), 940—947 |
90 | Wang L., Li S. R., Chen Y. Z., Jiang H. L., Small,2021, 17(22), 2004481 |
[1] | 赵盈喆, 张建玲. 金属-有机框架基材料在二氧化碳光催化转化中的应用[J]. 高等学校化学学报, 2022, 43(7): 20220223. |
[2] | 于鹏东, 关兴华, 王冬冬, 辛志荣, 石强, 殷敬华. 新型光、 热双响应形状记忆聚合物的制备与性能[J]. 高等学校化学学报, 2022, 43(6): 20220085. |
[3] | 赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 改性钆/硼/聚乙烯纳米复合材料的制备及对中子和伽马射线的屏蔽性能[J]. 高等学校化学学报, 2022, 43(6): 20220039. |
[4] | 冯丽, 邵兰兴, 李思骏, 全文选, 庄金亮. 超薄Sm-MOF纳米片的合成及可见光催化降解芥子气模拟剂性能[J]. 高等学校化学学报, 2022, 43(4): 20210867. |
[5] | 赵君禹, 王春博, 王成杨, 张克, 丛冰, 杨岚, 赵晓刚, 陈春海. 导热膨胀石墨/聚醚酰亚胺复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(4): 20210800. |
[6] | 田雪琴, 莫争, 丁鑫, 武鹏彦, 王雨, 王健. 方胺功能化荧光金属-有机框架材料的制备及对组氨酸的识别研究[J]. 高等学校化学学报, 2022, 43(2): 20210589. |
[7] | 储瑶, 王烁, 张子诺, 王艺博, 蔡以兵. 铜粒子负载泡沫基相变复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(2): 20210619. |
[8] | 史潇凡, 朱剑, 白田宇, 付子萱, 张冀杰, 卜显和. 金属-有机框架材料在光电催化水分解领域的研究进展[J]. 高等学校化学学报, 2022, 43(1): 20210613. |
[9] | 吴季, 张浩, 骆昱晖, 耿吴越, 兰亚乾. 一种具有荧光性质的阳离子Ga⁃MOF用于Fe3+和硝基化合物识别[J]. 高等学校化学学报, 2022, 43(1): 20210617. |
[10] | 张弛, 孙福兴, 朱广山. 双金属同构金属-有机框架材料CAU-21-Al/M的合成、 氮气吸附及复合膜性能[J]. 高等学校化学学报, 2022, 43(1): 20210578. |
[11] | 韩宗甦, 于晓泳, 闵辉, 师唯, 程鹏. 一个基于偶氮六酸的稀土金属-有机框架[J]. 高等学校化学学报, 2022, 43(1): 20210342. |
[12] | 赵凌云, 黄汉雄, 罗杜宇, 苏逢春. 复合材料柔软性对倒金字塔微结构阵列传感器性能的影响[J]. 高等学校化学学报, 2021, 42(9): 2953. |
[13] | 李占峰, 刘本学, 刘晓婵, 王新强, 张晶, 于诗摩, 赵新富, 张新恩, 伊希斌. 氧化锆湿凝胶中乙酰丙酮配体的脱除机理及气凝胶复合材料的制备[J]. 高等学校化学学报, 2021, 42(9): 2904. |
[14] | 高晓乐, 王家信, 李志芳, 李艳春, 杨冬花. 复合材料NiOx-ZSM-5的制备及微生物电解池催化析氢性能[J]. 高等学校化学学报, 2021, 42(9): 2886. |
[15] | 魏敏敏, 袁泽, 闾敏, 马辉, 谢小吉, 黄岭. 稀土掺杂上转换纳米颗粒-金属有机骨架复合材料的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||