高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (4): 1213.doi: 10.7503/cjcu20200666
王雅雯1, 李东1, 梁文凯1, 孙迎辉2(), 江林1(
)
收稿日期:
2020-09-09
出版日期:
2021-04-10
发布日期:
2021-01-27
通讯作者:
孙迎辉
E-mail:yinghuisun@suda.edu.cn;ljiang@suda.edu.cn
作者简介:
江 林, 女, 博士, 教授, 主要从事功能纳米材料的可控组装及应用研究. E-mail: 基金资助:
WANG Yawen1, LI Dong1, LIANG Wenkai1, SUN Yinghui2(), JIANG Lin1(
)
Received:
2020-09-09
Online:
2021-04-10
Published:
2021-01-27
Contact:
SUN Yinghui
E-mail:yinghuisun@suda.edu.cn;ljiang@suda.edu.cn
摘要:
目前, 单一的金属纳米粒子结构已经难以满足多学科交叉发展的需求. 因此, 将多种金属纳米粒子(如不同尺寸、 形状、 组分等)集成在同一基底表面, 能够充分发挥不同金属纳米粒子的性质和优势, 极具研究价值和应用价值. 本文介绍了多元化表面等离激元纳米粒子结构的构筑方法, 以及其在信息编码、 光电器件、 能源催化等领域的应用. 最后, 提出了当前在多元化结构制备中存在的挑战, 并展望了利用多元化结构实现性能提升的前景.
中图分类号:
TrendMD:
王雅雯, 李东, 梁文凯, 孙迎辉, 江林. 表面等离激元金属纳米粒子的多元化结构及应用. 高等学校化学学报, 2021, 42(4): 1213.
WANG Yawen, LI Dong, LIANG Wenkai, SUN Yinghui, JIANG Lin. Multiplex Structures of Plasmonic Metal Nanoparticles and Their Applications. Chem. J. Chinese Universities, 2021, 42(4): 1213.
Fig.1 Dark?field optical image and SEM image of the arrangement of Au nanorods(NRs)[13](A), schematic of capillary?force?assisted particle assembly and SEM image of arrays of single Ag cuboctahedra(B)[15](A) Copyright 2012, Wiley-VCH; (B) Copyright 2019, American Chemical Society.
Fig.2 Schematic of single nanoparticle assembly onto templated substrate by electrophoretic deposition(EPD)(A), dark?field optical image and SEM image of Au NR arrays(B)[18] and schematic illustration of the potential of EPD assembly of nanomaterials(C)[19](A, B) Copyright 2018, American Chemical Society; (C) Copyright 2019, Wiley-VCH.
Fig.3 Schematic illustration of the assembly of Au nanocubes(NCs) through DNA hybridization(A), SEM image of nanocube arrays with low and high magnification(B)[22] and SEM images of vertically assembled one?, two?, three? and four?layer octahedral nanoparticle architectures(C)[23](A, B) Copyright 2015, American Chemical Society; (C) Copyright 2018, Wiley-VCH.
Fig.4 Schematic of electrostatic assembly process and corresponding SEM image of as?assembled trimers(A)[25] and schematic illustration, dark field image and SEM image of particle assembly induced by electrostatic interaction(B)[29](A) Copyright 2017, American Chemical Society; (B) Copyright 2018, American Chemical Society.
Fig.5 SEM image, absorption spectra and absorption intensity mapping of the multiplexed encoding platform(A)[38], schematic illustration, dark?field image and scattering spectra showing the encoding and decoding process(B)[39] and dark?field optical images of letters showing polarization?dependent color switching(C)[40](A) Copyright 2018, American Chemical Society; (B) Copyright 2020, American Chemical Society; (C) Copyright 2016, Wiley-VCH.
Fig.6 Structural illustration of solar cell and TEM images of the added Au nanospheres@SiO2 and Au bipyramids@SiO2(A), power conversion efficiency of the device with different particle mass ratio(B)[51], structural illustration of an inverted OPV with Au NP array(C), TEM image of multiple?morphology Au NPs(D) and relationship between ΔEQE and absorption spectrum of Au NPs(E)[52](A, B) Copyright 2018, Wiley-VCH; (C―E) Copyright 2018, the Royal Society of Chemistry.
Fig.7 Digital photograph of hydrogen evolution from multiple stacking plates(A), illustration of the panchromatic photosynthetic device decorated with Au NRs with different aspect ratios(B)[60], photocurrent response of multiplex substrate assembled with Au NPs and Au@Ag NPs(C)[61] and photoconversion efficiency for bimetallic Au?Ag nanoparticle modified photoanode(D)[62](A, B) Copyright 2015, American Chemical Society; (C) Copyright 2019, Wiley-VCH; (D) Copyright 2020, American Chemical Society.
Fig.8 Schematic illustration of the proposed mechanism for ultrasensitive colorimetric detection based on Au nanobipyramids(A)[70] and illustration of the sensing principle of DNA?modified nanoparticle arrays(B)[76](A) Copyright 2017, American Chemical Society; (B) Copyright 2019, American Chemical Society.
1 | Willets K. A., van Duyne R. P., Annu. Rev. Phys. Chem., 2007, 58, 267—297 |
2 | Tran V., Thiel C., Svejda J. T., Jalali M., Walkenfort B., Erni D., Schlucker S., Nanoscale, 2018, 10(46), 21721—21731 |
3 | Jiang N., Zhuo X., Wang J., Chem. Rev., 2018, 118(6), 3054—3099 |
4 | Phan⁃Quang G. C., Han X., Koh C. S., Sim H. Y., Lay C. L., Leong S. X., Lee Y. H., Pazos⁃Perez N., Alvarez⁃Puebla R. A., Ling X. Y., Acc. Chem. Res., 2019, 52(7), 1844—1854 |
5 | Rycenga M., Cobley C. M., Zeng J., Li W., Moran C. H., Zhang Q., Qin D., Xia Y., Chem. Rev., 2011, 111(6), 3669—3712 |
6 | Zhao P., Li N., Astruc D., Coord. Chem. Rev., 2013, 257(3/4), 638—665 |
7 | Ye X., Zheng C., Chen J., Gao Y., Murray C. B., Nano Lett., 2013, 13(2), 765—771 |
8 | Xu W., Li Z., Yin Y., Small, 2018, 14(35), e1801083 |
9 | Shi Q., Cheng W., Adv. Funct. Mater., 2019, 30(2), 1902301 |
10 | Mayer M., Schnepf M. J., König T. A., Fery A., Adv. Opt. Mater., 2019, 7(1), 1800564 |
11 | Kuemin C., Stutz R., Spencer N. D., Wolf H., Langmuir, 2011, 27(10), 6305—6310 |
12 | Tan J. M., Ruan J. J., Lee H. K., Phang I. Y., Ling X. Y., Phys. Chem. Chem. Phys., 2014, 16(48), 26983—26990 |
13 | Kuemin C., Nowack L., Bozano L., Spencer N. D., Wolf H., Adv. Funct. Mater., 2012, 22(4), 702—708 |
14 | Flauraud V., Mastrangeli M., Bernasconi G. D., Butet J., Alexander D. T., Shahrabi E., Martin O. J., Brugger J., Nat. Nanotechnol., 2017, 12(1), 73—80 |
15 | Juodenas M., Tamulevicius T., Henzie J., Erts D., Tamulevicius S., ACS Nano, 2019, 13(8), 9038—9047 |
16 | Siavoshi S., Yilmaz C., Somu S., Musacchio T., Upponi J. R., Torchilin V. P., Busnaina A., Langmuir, 2011, 27(11), 7301—7306 |
17 | Qian F., Pascall A. J., Bora M., Han T. Y., Guo S., Ly S. S., Worsley M. A., Kuntz J. D., Olson T. Y., Langmuir, 2015, 31(12), 3563—3568 |
18 | Zhang H., Cadusch J., Kinnear C., James T., Roberts A., Mulvaney P., ACS Nano, 2018, 12(8), 7529—7537 |
19 | Zhang H., Kinnear C., Mulvaney P., Adv. Mater., 2020, 32(18), 1904551 |
20 | Zhang T., Li H., Hou S., Dong Y., Pang G., Zhang Y., ACS Appl. Mater. Interfaces, 2015, 7(49), 27131—27139 |
21 | Hu Y., Niemeyer C. M., Adv. Mater., 2019, 31(26), 1806294 |
22 | Lin Q. Y., Li Z., Brown K. A., O'Brien M. N., Ross M. B., Zhou Y., Butun S., Chen P. C., Schatz G. C., Dravid V. P., Aydin K., Mirkin C. A., Nano Lett., 2015, 15(7), 4699—4703 |
23 | Zhou W., Lin Q. Y., Mason J. A., Dravid V. P., Mirkin C. A., Small, 2018, 14(44), e1802742 |
24 | Lin Q. Y., Mason J. A., Li Z. Y., Zhou W. J., O'Brien M. N., Brown K. A., Jones M. R., Butun S.,Lee B., Dravid V. P., Aydin K., Mirkin C. A., Science, 2018, 359, 669—672 |
25 | Lloyd J. A., Ng S. H., Liu A. C., Zhu Y., Chao W., Coenen T., Etheridge J., Gomez D. E., Bach U., ACS Nano, 2017, 11(2), 1604—1612 |
26 | Lloyd J. A., Liu Y., Ng S. H., Thai T., Gomez D. E., Widmer⁃Cooper A., Bach U., Nanoscale, 2019, 11(47), 22841—22848 |
27 | Jiang L., Wang W., Fuchs H., Chi L., Small, 2009, 5(24), 2819—2822 |
28 | Jiang L., Chen X., Lu N., Chi L., Acc. Chem. Res., 2014, 47(10), 3009—3017 |
29 | Kinnear C., Cadusch J., Zhang H., Lu J., James T. D., Roberts A., Mulvaney P., Langmuir, 2018, 34(25), 7355—7363 |
30 | Zhang M., Pacheco⁃Pena V., Yu Y., Chen W., Greybush N. J., Stein A., Engheta N., Murray C. B., Kagan C. R., Nano Lett., 2018, 18(11), 7389—7394 |
31 | Li D., Sun Y. H., Wang Z. S., Huang J., Lu N., Jiang L., Chem. J. Chinese Universities, 2020, 41(2), 221—227(李东, 孙迎辉, 王中舜, 黄晶, 吕男, 江林. 高等学校化学学报, 2020, 41(2), 221—227) |
32 | Gwo S., Lin M. H., He C. L., Chen H. Y., Teranishi T., Langmuir, 2012, 28(24), 8902—8908 |
33 | Goh X. M., Zheng Y., Tan S. J., Zhang L., Kumar K., Qiu C. W., Yang J. K., Nat. Commum., 2014, 5, 5361 |
34 | Cui Y., Hegde R. S., Phang I. Y., Lee H. K., Ling X. Y., Nanoscale, 2014, 6(1), 282—288 |
35 | Wang Z., Zong S., Li W., Wang C., Xu S., Chen H., Cui Y., J. Am. Chem. Soc., 2012, 134(6), 2993—3000 |
36 | Liu Y., Lee Y. H., Zhang Q., Cui Y., Ling X. Y., J. Mater. Chem. C, 2016, 4(19), 4312—4319 |
37 | Franklin D., Modak S., Vazquez⁃Guardado A., Safaei A., Chanda D., Light: Sci. Appl., 2018, 7, 93 |
38 | Lin Q. Y., Palacios E., Zhou W., Li Z., Mason J. A., Liu Z., Lin H., Chen P. C., Dravid V. P., Aydin K., Mirkin C. A., Nano Lett., 2018, 18(4), 2645—2649 |
39 | Wang Y., Li D., Sun Y., Zhong L., Liang W., Qin W., Guo W., Liang Z., Jiang L., ACS Appl. Mater. Interfaces, 2020, 12(5), 6176—6182 |
40 | Chen T., Reinhard B. M., Adv. Mater., 2016, 28(18), 3522—3527 |
41 | Si K. J., Sikdar D., Yap L. W., Foo J. K., Guo P., Shi Q., Premaratne M., Cheng W., Adv. Opt. Mater., 2015, 3(12), 1710—1717 |
42 | Duan X., Liu N., ACS Nano, 2018, 12(8), 8817—8823 |
43 | Jang Y. H., Jang Y. J., Kim S., Quan L. N., Chung K., Kim D. H., Chem. Rev., 2016, 116(24), 14982—15034 |
44 | Chan K., Wright M., Elumalai N., Uddin A., Pillai S., Adv. Opt. Mater., 2017, 5(6), 1600698 |
45 | Ueno K., Oshikiri T., Sun Q., Shi X., Misawa H., Chem. Rev., 2018, 118(6), 2955—2993 |
46 | Fu N., Bao Z. Y., Zhang Y. L., Zhang G., Ke S., Lin P., Dai J., Huang H., Lei D. Y., Nano Energy, 2017, 41, 654—664 |
47 | Yao K., Zhong H., Liu Z., Xiong M., Leng S., Zhang J., Xu Y. X., Wang W., Zhou L., Huang H., Jen A. K., ACS Nano, 2019, 13(5), 5397—5409 |
48 | Panigrahi S., Jana S., Calmeiro T., Nunes D., Deuermeier J., Martins R., Fortunato E., J. Mater. Chem. A, 2019, 7(34), 19811—19819 |
49 | Baek S. W., Hun Kim J., Kang J., Lee H., Young Park J., Lee J. Y., Adv. Energy Mater., 2015, 5(24), 1501393 |
50 | Ye T., Ma S., Jiang X., Wei L., Vijila C., Ramakrishna S., Adv. Funct. Mater., 2017, 27(22), 1606545 |
51 | Chen S., Wang Y. j., Liu Q., Shi G., Liu Z., Lu K., Han L., Ling X., Zhang H., Cheng S., Ma W., Adv. Energy Mater., 2018, 8(8), 1701194 |
52 | Shao W., Liang Z., Guan T., Chen J., Wang Z., Wu H., Zheng J., Abdulhalim I., Jiang, L., J. Mater. Chem. A, 2018, 6(18), 8419—8429 |
53 | Zhang P., Wang T., Gong J., Adv. Mater., 2015, 27(36), 5328—5342 |
54 | Chen B., Zhang Z., Baek M., Kim S., Kim W., Yong K., Appl. Catal. B, 2018, 237, 763—771 |
55 | Mascaretti L., Dutta A., Kment S., Shalaev V. M., Boltasseva A., Zboril R., Naldoni A., Adv. Mater., 2019, 31(31), e1805513 |
56 | Xiao F. X., Liu B., Adv. Mater. Interfaces, 2018, 5(6), 1701098 |
57 | Dhiman M., J. Mater. Chem. A, 2020, 8(20), 10074—10095 |
58 | Liu Z., Hou W., Pavaskar P., Aykol M., Cronin S. B., Nano Lett., 2011, 11(3), 1111—1116 |
59 | Pu Y. C., Wang G., Chang K. D., Ling Y., Lin Y. K., Fitzmorris B. C., Liu C. M., Lu X., Tong Y., Zhang J. Z., Hsu Y. J., Li Y., Nano Lett., 2013, 13(8), 3817—3823 |
60 | Mubeen S., Lee J., Liu D., Stucky G. D., Moskovits M., Nano Lett., 2015, 15(3), 2132—2136 |
61 | Liang W., Li D., Sun Y., Li Z., Zhao L., Zhong L., Zhang J., Liang Z., Abdulhalim I., Jiang L., Adv. Mater. Interfaces, 2019, 7(2), 1900966 |
62 | Lim F. S., Tan S. T., Zhu Y., Chen J. W., Wu B., Yu H., Kim J. M., Ginting R. T., Lau K. S., Chia C. H., Wu H., Gu M., Chang W. S., J. Phys. Chem. C, 2020, 124(26), 14105—14117 |
63 | Li S., Miao P., Zhang Y., Wu J., Zhang B., Du Y., Han X., Sun J., Xu P., Adv. Mater., 2020, doi: 10.1002/adma.202000086 |
64 | Zhang Z., Zhang C., Zheng H., Xu H., Acc. Chem. Res., 2019, 52(9), 2506—2515 |
65 | Bhattacharya C., Saji S. E., Mohan A., Madav V., Jia G., Yin Z., Adv. Energy Mater., 2020, 10(40), 2002402 |
66 | Tong F., Lou Z., Liang X., Ma F., Chen W., Wang Z., Liu Y., Wang P., Cheng H., Dai Y., Zheng Z., Huang B., Appl. Catal. B, 2020, 277, 119226 |
67 | Wang H., Rao H., Luo M., Xue X., Xue Z., Lu X., Coord. Chem. Rev., 2019, 398, 113003 |
68 | Csaki A., Stranik O., Fritzsche W., Expert Rev. Mol. Diagn., 2018, 18(3), 279—296 |
69 | Liu B., Monshat H., Gu Z., Lu M., Zhao X., Analyst, 2018, 143(11), 2448—2458 |
70 | Xu S., Ouyang W., Xie P., Lin Y., Qiu B., Lin Z., Chen G., Guo L., Anal. Chem., 2017, 89(3), 1617—1623 |
71 | Sriram M., Markhali B. P., Nicovich P. R., Bennett D. T., Reece P. J., Hibbert D. B., Tilley R. D., Gaus K., Vivekchand S. R. C., Gooding J. J., Biosens. Bioelectron., 2018, 117, 530—536 |
72 | Chen S., Zhao Q., Zhang L., Xia X., Huang H., Anal. Methods, 2015, 7(3), 1018—1025 |
73 | Susu L., Campu A., Astilean S., Focsan M., Nanomaterials, 2020, 10(6), 1025 |
74 | Soler M., Belushkin A., Cavallini A., Kebbi⁃Beghdadi C., Greub G., Altug H., Biosens. Bioelectron., 2017, 94, 560—567 |
75 | Lee J. U., Nguyen A. H., Sim S. J., Biosens. Bioelectron., 2015, 74, 341—346 |
76 | Zopf D., Pittner A., Dathe A., Grosse N., Csaki A., Arstila K., Toppari J. J., Schott W., Dontsov D., Uhlrich G., Fritzsche W., Stranik O., ACS Sens., 2019, 4(2), 335—343 |
77 | Tort N., Salvador J. P., Marco M. P., Biosens. Bioelectron., 2017, 90, 13—22 |
78 | Kim H., Lee J. U., Song S., Kim S., Sim S. J., Biosens. Bioelectron., 2018, 101, 96—102 |
[1] | 李琳, 齐丰莲, 邱丽莉, 孟子晖. 基于六边形磁纳米片构建动态非晶态光学结构图案[J]. 高等学校化学学报, 2022, 43(8): 20220123. |
[2] | 仵宇帅, 尚颖旭, 蒋乔, 丁宝全. 可控自组装DNA折纸结构作为药物载体的研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220179. |
[3] | 俞彬, 谌小燕, 赵越, 陈卫昌, 肖新颜, 刘海洋. 氧化石墨烯基钴卟啉复合材料的电催化析氢反应[J]. 高等学校化学学报, 2022, 43(2): 20210549. |
[4] | 李波, 孟禹汐, 王雯雯, 臧宏瑛. 多核多氧硫钼酸盐化合物的合成及质子传导性能[J]. 高等学校化学学报, 2022, 43(1): 20210657. |
[5] | 杜顺福, 王文经, EL-SAYED El-Sayed M., 苏孔钊, 袁大强, 洪茂椿. 一种具有化学发光性能的锆基金属有机四面体[J]. 高等学校化学学报, 2022, 43(1): 20210628. |
[6] | 王昭一, 穆世林, 张学民, 张俊虎. 均一取向等离子体二聚体的制备及光学机理[J]. 高等学校化学学报, 2021, 42(8): 2374. |
[7] | 薛谨, 曹小卫, 刘依帆, 王敏. 纸质空心金纳米笼SERS传感器的制备及对非小细胞肺癌患者痰液中miRNAs的快速高灵敏检测[J]. 高等学校化学学报, 2021, 42(8): 2393. |
[8] | 马卓远, 汪大洋. 分子自组装单层膜的表面浸润性研究现状和展望[J]. 高等学校化学学报, 2021, 42(4): 1031. |
[9] | 李荣烨, 倪云霞, 刘丹丹, 李志, 程玉新, 夏明欣, 付小会. 一种新型温度响应性聚氨基酸/聚类肽嵌段共聚物的合成与表征[J]. 高等学校化学学报, 2021, 42(3): 850. |
[10] | 潘菁, 徐敏敏, 袁亚仙, 姚建林. 基于表面增强拉曼光谱快速检测纺织品禁用染料[J]. 高等学校化学学报, 2021, 42(12): 3716. |
[11] | 张娟, 胡馨月, 王洪勃, 廉英, 乐金玉, 杨子浩. 基于β⁃环糊精@全氟壬酸主客体作用构筑的斜六面体结构水凝胶[J]. 高等学校化学学报, 2021, 42(10): 3187. |
[12] | 唐文涛, 李圣凯, 王昚, 陈龙, 陈卓. 基于激光介导富集的表面增强拉曼分析[J]. 高等学校化学学报, 2021, 42(10): 3054. |
[13] | 侯春喜, 李逸佳, 王婷婷, 刘盛达, 闫腾飞, 刘俊秋. 弹性肽在超分子组装中的应用[J]. 高等学校化学学报, 2020, 41(6): 1163. |
[14] | 白若男, 李青, 乔山林, 张春焕, 赵永生. 1,4-二咔唑基苯微米结构的可控制备及光波导性质[J]. 高等学校化学学报, 2020, 41(5): 967. |
[15] | 王军, 王铁. 基于自组装技术的纳米功能材料研究进展[J]. 高等学校化学学报, 2020, 41(3): 377. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||