高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (3): 377-387.doi: 10.7503/cjcu20190643
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
王军1,2,王铁1,2,*
收稿日期:
2019-12-10
出版日期:
2020-03-10
发布日期:
2020-01-06
通讯作者:
王铁
作者简介:
王 铁, 男, 博士, 研究员, 主要从事纳米自组装的分析检测研究. E-mail: wangtie@iccas.ac.cn
基金资助:
WANG Jun1,2,WANG Tie1,2,*
Received:
2019-12-10
Online:
2020-03-10
Published:
2020-01-06
Contact:
Tie WANG
Supported by:
摘要:
纳米自组装技术的迅速发展拓宽了纳米材料的应用领域. 利用自组装合成纳米新材料是一种有效且具有发展前景的方法. 本综述介绍了纳米自组装技术的研究价值及近年来新兴的制备方法, 重点论述了驱动纳米自组装的作用类型, 包括范德华力、 静电作用、 磁力作用、 氢键、 熵效应以及疏溶剂相互作用、 DNA碱基互补配对等其它相互作用, 同时也对纳米自组装体的应用情况进行了阐述, 并探讨了利用纳米自组装技术研制新材料所面临的机遇和挑战.
中图分类号:
王军, 王铁. 基于自组装技术的纳米功能材料研究进展[J]. 高等学校化学学报, 2020, 41(3): 377-387.
WANG Jun, WANG Tie. Recent Progress in Functional Nanomaterials Based on Self-assembly Technology [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 377-387.
Fig.1 Decisive effect of ligand density and the symmetry of surface patterns on the directional self-assembly between particles[32] (A), (B) Side view and top view of coordination geometry of nanoparticles(NPs) in the crystal lattice; (C) contacting environment among the interparticle ligands; (D) side-by-side stacking of the ligands; (E) point-to-point stacking of the ligands; (F) schematics of the directional NP assembly through matching the symmetry of surface patterns. Copyright 2016, American Association for the Advancement of Science.
Fig.2 Gold nanoparticles(GNPs) modified with amphiphilic block copolymers(BCPs) assembly to form spherical vesicles (A) GNPs with high grafting density interact mainly through solvophobic interactions between polymer coatings to form 2D arrays; (B) GNPs with low grafting density interact mainly through van der Waals interactions between particle cores to form 1D stings[38]. Copyright 2016, Wiley-VCH.
Fig.3 Schematic representations of different packing models of self-assembled Ag-MXA superclusters induced by hydrogen bonding interactions[45] (A) The range of packing factor determines the geometry of the assembly: from hexagonal superclusters(i) to lamellar superclusters(ii); (B)—(D) schematic representations of different packing models: (B) hexagonal, (C) lamellar, (D) bi-lamellar; (E) the formation process of self-assembled Ag-MXA superclusters. Copyright 2018, Wiley-VCH.
Fig.4 Schematic illustration(A) and digital photo(B) expressing the assembly properties of Fe3O4@SiO2 driven by magnetic force in a complex magnetic field and schematic illustration(C) and digital photo(D) expressing the adjustable structure and photonic properties controlled by the magnetic field[50] Copyright 2012, American Chemical Society.
Fig.5 Images of Fe3O4 particles, Fe3O4@nSiO2 nanochains, and Fe3O4@nSiO2@mSiO2 nanochains prepared by a novel magnetic-field-guided interface coassembly approach[55] (A) TEM image of Fe3O4 particles; (B), (C) SEM and TEM images of Fe3O4@nSiO2 nanochains; (D), (E) SEM images of Fe3O4@nSiO2@mSiO2 nanochains in different magnifications; (F) TEM image of Fe3O4@nSiO2@mSiO2 nanochains expressing unique pores in the out silica shell. Copyright 2018, Wiley-VCH.
Fig.6 Schematic illustration of the importance of entropic attractions between NPAMs in controlling the lateral phase separation of the two types of amphiphiles in the membranes[60] Copyright 2014, American Chemical Society.
Fig.7 Levitation mediated self-assembly of a bilayered nanoassembly[67] (A) Schematic illustration of acoustic levitation self-assembly process; (B)—(F) the temporal evolution of an evaporating droplet collected with a camera; (G)—(J) SEM images of bilayered nanoassemblies assembled from different building blocks; (G) Au NC; (H) Au@Ag NB; (I) Au NBP; (J) Au TOH. Copyright 2019, American Chemical Society.
Fig.9 Diagrammatic sketch of assembly process of GSP@ZIF-8 core-shell structure(A) and the application of GSP@ZIF-8 in volatile organic compound(VOC) detection via SERS spectroscopy(B)[79] Copyright 2018, Wiley-VCH.
[1] | Zhang J. Z., Wang Z. L., Liu J., Chen S. W., Liu G. Y ., Translated by Cao M. S., Cao C. B., Self-Assembled Nanostructures, Chemical Industry Press, Beijing, 2004, 1— 14 |
( 曹茂盛, 曹传玉 [译]. 自组装纳米结构, 北京: 化学工业出版社, 2004, 1— 14) | |
[2] | Guo J. L., Tardy B. L., Christofferson A. J., Dai Y. L., Richardson J. J., Zhu W., Hu M., Ju Y., Cui J. W., Dagastine R. R., Yarovsky I., Caruso F ., Nat. Nanotech., 2016, 11( 12), 1105— 1111 |
[3] | Boles M. A., Engel M., Talapin D. V ., Chem. Rev., 2016, 116( 18), 11220— 11289 |
[4] | Zhang X. Y., Gong C. C., Akakuru O. U., Su Z. Q., Wu A. G., Wei G ., Chem. Soc. Rev., 2019, 48( 23), 5564— 5595 |
[5] | Grzelczak M., Vermant J., Furst E. M., Liz-Marzan L. M ., ACS Nano, 2010, 4( 7), 3591— 3605 |
[6] | Zhang S. M., Zeng H. C ., Chem. Mater., 2009, 21( 5), 871— 883 |
[7] | Zhao T. C., Elzatahry A., Li X. M., Zhao D. Y ., Nat. Rev. Mater., 2019, 4( 12), 775— 791 |
[8] | Li X., Iocozzia J., Chen Y. H., Zhao S. Q., Cui X., Wang W., Yu H. F., Lin S. L., Lin Z. Q ., Angew. Chem. Int. Ed., 2018, 57( 8), 2046— 2070 |
[9] | Tian Y., Zhang Y. G., Wang T., Xin H. L. L., Li H. L., Gang O ., Nat. Mater., 2016, 15( 6), 654— 661 |
[10] | Zhou T. Y., Zhu J. Y., Gong L. S., Nong L. T., Liu J. B ., J. Am. Chem. Soc., 2019, 141( 7), 2852— 2856 |
[11] | Correa-Duarte M. A., Liz-Marzan L. M ., J. Mater. Chem., 2006, 16( 1), 22— 25 |
[12] | Ruan C. M., Eres G., Wang W., Zhang Z. Y., Gu B. H ., Langmuir, 2007, 23( 10), 5757— 5760 |
[13] | Li T. T., Xue B., Wang B. W., Guo G. N., Han D. D., Yan Y. C., Dong A. G ., J. Am. Chem. Soc., 2017, 139( 35), 12133— 12136 |
[14] | Wibowo S. H., Sulistio Adrian., Wong E. H. H., Blencowe A., Qiao G. G ., Adv. Funct. Mater., 2015, 25( 21), 3147— 3156 |
[15] | Mertz D., Cui J. W., Yan Y., Devlin G., Chaubaroux C., Dochter A., Alles R., Lavalle P., Voegel J. C., Blencowe A., Auffinger P., Caruso F ., ACS Nano, 2012, 6( 9), 7584— 7594 |
[16] | Geng H. Y., Chen W. Y., Xu Z. P., Qian G. R., An J., Zhang H. J ., Chem. Eur. J., 2017, 23( 45), 10878— 10885 |
[17] | Zhu P., Jiao J. S., Shen R. Q., Ye Y. H., Fu S., Li D. L ., J. Appl. Phys., 2014, 115( 19), 194502 |
[18] | Pan R. J., Sun R., Wang. Z. H., Lindh J., Edstrom K., Stromme M., Nyholm L ., Nano Energy, 2019, 55, 316— 326 |
[19] | Li P., Hwang J. Y., Sun Y. K ., ACS Nano, 2019, 13( 2), 2624— 2633 |
[20] | Huang H. B., Wang Y., Jiao W. B., Cai F. Y., Shen M., Zhou S. G., Cao H. L., Lü J., Cao R ., ACS Sustainable Chem. Eng., 2018, 6( 6), 7871— 7879 |
[21] | Que R. H., Shao M. W., Zhuo S. J., Wen C. Y., Wang S. D., Lee S. T ., Adv. Funct. Mater., 2011, 21( 17), 3337— 3343 |
[22] | Yang Y., Song X., Li X. J., Chen Z. Y., Zhou C., Zhou Q. F., Chen Y ., Adv. Mater., 2018, 30( 36), 1706539 |
[23] | Zhang Y. M., Zhang F., Zhang X., Xu Y. M., Qi X. H., Quan C. S ., Chem. Res. Chinese Universities, 2018, 34( 4), 655— 660 |
[24] | Liu X. G., Zhang F., Jing X. X., Pan M. C., Liu P., Li W., Zhu B. W., Li J., Chen H., Wang L. H., Lin J. P., Liu Y., Zhao D. Y., Yan H., Fan C. H ., Nature, 2018, 559( 7715), 593— 598 |
[25] | Fu G. T., Liu H. M., You N. K., Wu J. Y., Sun D. M., Xu L., Tang Y. W., Chen Y ., Nano Res., 2016, 9( 3), 755— 765 |
[26] | Chen W., Bian A., Agarwal A., Liu L. Q., Shen H. B., Wang L. B., Xu C. L., Kotov N. A ., Nano Lett., 2009, 9( 5), 2153— 2159 |
[27] | Luo D., Yan C., Wang T ., Small, 2015, 11( 45), 5984— 6008 |
[28] | Lin Y., Boker A., He J. B., Sill K., Xiang H. Q., Abetz C., Li X. F., Wang J., Emrick T., Long S., Wang Q., Balazs A., Russell T. P ., Nature, 2005, 434( 7029), 55— 59 |
[29] | Wang T., Zhuang J. Q., Lynch J., Chen O., Wang Z. L., Wang X. R., LaMontagne D., Wu H. M., Wang Z. W., Cao Y. C ., Science, 2012, 338( 6105), 358— 363 |
[30] | Wang T., Wang X. R., LaMontagne D., Wang Z. W., Cao Y. C ., J. Am. Chem. Soc., 2013, 135( 16), 6022— 6025 |
[31] | Zhang Y., Guan T. Y., Han G., Guo T. Y., Zhang W. Q ., Macromolecules, 2019, 52( 2), 718— 728 |
[32] | Zeng C. J., Chen Y. X., Kirschbaum K., Lambright K. J., Jin R. C ., Science, 2016, 354( 6319), 1580— 1584 |
[33] | Gao B., Arya G., Tao A. R ., Nat. Nanotech., 2012, 7( 7), 433— 437 |
[34] | Cheng W. L., Hartman M. R., Smilgies D. M., Long R., Campolongo M. J., Li R. P., Sekar K., Hui C. Y., Luo D ., Angew. Chem. Int. Ed., 2010, 49( 2), 380— 384 |
[35] | Si K. J., Chen Y., Shi Q. Q., Cheng W. L ., Adv. Sci., 2017, 5( 1), 1700179 |
[36] | Zhu Z. N., Meng H. F., Liu W. J., Liu X. F., Gong J. X., Qiu X. H., Jiang L., Wang D., Tang Z. Y ., Angew. Chem. Int. Ed., 2011, 50( 7), 1593— 1596 |
[37] | Liu Y. J., He J., Yang K. K., Yi C. L., Liu Y., Nie L. M., Khashab N. M., Chen X. Y., Nie Z. H ., Angew.Chem. Int. Ed., 2015, 54( 52), 15809— 15812 |
[38] | Bishop K. J. M ., Angew. Chem. Int. Ed., 2016, 55( 5), 1598— 1600 |
[39] | Walker D. A., Leitsch E. K., Nap R. J., Szleifer I., Grzybowski B. A ., Nat. Nanotech., 2013, 8( 9), 676— 681 |
[40] | Zeng M. Q., Cao H., Zhang Q. Q., Gao X. W., Fu L ., Chem, 2018, 4( 3), 626— 636 |
[41] | Xu J., Yang W. M., Huang S. J., Yin H., Zhang H., Radjenovic P., Yang Z. L., Tian Z. Q., Li J. F ., Nano Energy, 2018, 49, 363— 371 |
[42] | Li Y. F., Song L., Wang B., He J. B., Li Y. L., Deng Z. X., Mao C. D ., Angew. Chem. Int. Ed., 2018, 130( 23), 7008— 7011 |
[43] | Han X. G., Li Y. L., Wu S. G., Deng Z. X ., Small, 2008, 4( 3), 326— 329 |
[44] | Hernandez E. A., Posada B., Irizarry R., Castro M. E ., J. Phys. Chem. B, 2005, 109( 15), 7251— 7257 |
[45] | Qin X. Y., Luo D., Xue Z. J., Song Q., Wang T ., Adv. Mater., 2018, 30( 9), 1706327 |
[46] | Qin X. Y., Li A. L., Liu K. Y., Xue Z. J., Song Q., Wang T ., Chem. Eur. J., 2019, 25( 45), 10662— 10667 |
[47] | Tang Z. Y., Kotov N. A., Giersig M ., Science, 2002, 297( 5579), 237— 240 |
[48] | Yan C., Wang T ., Chem. Soc. Rev., 2017, 46( 5), 1483— 1509 |
[49] | Sheparovych R., Sahoo Y., Motornov M., Wang S. M., Luo H., Prasad P. N., Sokolov I., Minko S ., Chem. Mater., 2006, 18( 3), 591— 593 |
[50] | He L., Wang M. S., Ge J. P., Yin Y. D ., Acc. Chem. Res., 2012, 45( 9), 1431— 1440 |
[51] | Ye M. M., Zorba S., He L., Hu Y. X., Maxwell R. T., Farah C., Zhang Q., Yin Y. D ., J. Mater. Chem., 2010, 20( 37), 7965— 7969 |
[52] | Chong W. H., Chin L. K., Tan R. L. S., Wang H., Liu A. Q., Chen H. Y ., Angew. Chem. Int. Ed., 2013, 52( 33), 8570— 8573 |
[53] | Yang S. L., Cao C. Y., Sun Y. B., Huang P. P., Wei F. F., Song W. G ., Angew. Chem. Int. Ed., 2015, 54( 9), 2661— 2664 |
[54] | Hill L. J., Pyun J ., ACS Appl. Mater. Interfaces, 2014, 6( 9), 6022— 6032 |
[55] | Wan L., Song H. Y., Chen X., Zhang Y., Yue Q., Pan P. P., Su J. C., Elzatahry A. A., Deng Y. H ., Adv. Mater., 2018, 30( 25), 1707515 |
[56] | Barry E., Dogic Z ., Proc. Natl. Acad. Sci. USA, 2010, 107( 23), 10348— 10353 |
[57] | Currie E. P. K., Norde W., Cohen Stuart M. A ., Adv. Colloid Interface Sci., 2003, 100, 205— 265 |
[58] | Lim R. Y. H., Deng J ., ACS Nano, 2009, 3( 10), 2911— 2918 |
[59] | Akcora P., Liu H. J., Kumar S. K., Moll J., Li Y., Benicewicz B. C., Schadler L. S., Acehan D., Panagiotopoulos A. Z., Pryamitsyn V., Ganesan V., Ilavsky J., Thiyagarajan P., Colby R. H., Douglas J. F ., Nat. Mater., 2009, 8( 4), 354— 359 |
[60] | Liu Y. J., Li Y. C., He J., Duelge K. J., Lu Z. Y., Nie Z. H ., J. Am. Chem. Soc., 2014, 136( 6), 2602— 2610 |
[61] | Yockell-Lelièvre H., Desbiens J., Ritcey A. M ., Langmuir, 2007, 23( 5), 2843— 2850 |
[62] | Ng K. C., Udagedara I. B., Rukhlenko I. D., Chen Y., Tang Y., Premaratne M., Cheng W. L ., ACS Nano, 2012, 6( 1), 925— 934 |
[63] | Qin X., Wang T., Jiang L ., Natl. Sci. Rev., 2017, 4( 5), 672— 677 |
[64] | Zhuang J. Q., Wu H. M., Yang Y. A., Cao Y. C ., Angew. Chem. Int. Ed., 2008, 47( 12), 2208— 2212 |
[65] | Zhuang J. Q., Wu H. M., Yang Y. A., Cao Y. C ., J. Am. Chem. Soc., 2007, 129( 46), 14166— 14167 |
[66] | Zhu M. Q., Wang L. Q., Exarhos G. J., Li A. D. Q ., J. Am. Chem. Soc., 2004, 126( 9), 2656— 2657 |
[67] | Shi Q. Q., Di W. L., Dong D. S., Yap L. W., Li L., Zang D. Y., Cheng W. L ., ACS Nano, 2019, 13( 5), 5243— 5250 |
[68] | Seeman N. C ., J. Theor. Biol., 1982, 99( 2), 237— 247 |
[69] | Yao G. B., Li J., Chao J., Pei H., Liu H. J., Zhao Y., Shi J. Y., Huang Q., Wang L. H., Huang W., Fan C. H ., Angew. Chem. Int. Ed., 2015, 54( 10), 2966— 2969 |
[70] | Shen C. Q., Lan X., Zhu C. G., Zhang W., Wang L. Y., Wang Q. B ., Adv. Mater., 2017, 29( 16), 1606533 |
[71] | Jain P. K., Eustis S., El-Sayed M. A ., J. Phys. Chem. B, 2006, 110( 37), 18243— 18253 |
[72] | Talapin D. V., Shevchenko E. V., Murray C. B, Kornowski A., Forster S., Weller H ., J. Am. Chem. Soc., 2004, 126( 40), 12984— 12988 |
[73] | Wang M. M., Zhang J., Wang P., Li C. P., Xu X. L., Jin Y. D ., Nano Res., 2018, 11( 7), 3854— 3863 |
[74] | Brown P., Kamat P. V ., J. Am. Chem. Soc., 2008, 130( 28), 8890— 8891 |
[75] | Lu A. H., Salabas E. L., Schuth F ., Angew. Chem. Int. Ed., 2007, 46( 8), 1222— 1244 |
[76] | Bian P. X., Zhang J. X., WangJ. Y., Yang J., Wang J. Y., Liu H. L., Sun Y. M., Li M. X., Zhang X. D ., Sci. Bull., 2018, 63( 14), 925— 934 |
[77] | Zhou T., Yan L. W., Xie C. M., Li P. F., Jiang L. L., Fang J., Zhao C. C., Ren F. Z., Wang K. F., Wang Y. B., Zhang H. P., Guo T. L., Lu X ., Small, 2019, 15( 25), 1805440 |
[78] | Cheng K. M., Ding Y. P., Zhao Y., Ye S. F., Zhao X., Zhang Y. L., Ji T. J., Wu H. H., Wang B., Anderson G. J., Ren L., Nie G. J ., Nano Lett., 2018, 18( 5), 3250— 3258 |
[79] | Qiao X. Z., Su B. S., Liu C., Song Q., Luo D., Mo G., Wang T ., Adv. Mater., 2018, 30( 5), 1702275 |
[80] | Luo D., Cui S. J., Liu Y., Shi C. Y., Song Q., Qin X. Y., Zhang T., Xue Z. J., Wang T ., J. Am. Chem. Soc., 2018, 140( 43), 14211— 14216 |
[81] | Liu L. Z., Chen S., Xue Z. J., Zhang Z., Qiao X. Z., Nie Z. X., Han D., Wang J. L., Wang T ., Nat. Commun., 2018, 9, 444 |
[82] | Liu Y., Luo D., Yu M., Wang Y., Jin S. S., Li Z. X., Cui S. J., He D. Q., Zhang T., Wang T., Zhou Y. H ., Adv. Funct. Mater., 2019, 29( 10), 1806445 |
[83] | Zhang L., Fan Q. K., Sha X., Zhong P., Zhang J., Yin Y. D., Gao C. B ., Chem. Sci., 2017,8(9), 6103— 6110 |
[84] | Xu J., Li X. M., Wu X., Wang W. Z., Fan R., Liu X. K., Xu H. L ., J. Phys. Chem. C, 2016, 120( 23), 12666— 12672 |
[85] | Ma Y., Wang X. L., Jia Y. S., Chen X. B., Han H. X., Li C ., Chem. Rev., 2014, 114( 19), 9987— 10043 |
[86] | Kudo A., Miseki Y ., Chem. Soc. Rev., 2009, 38( 1), 253— 278 |
[87] | Zhang J. Q., Li L., Xiao Z. X., Liu D., Wang S., Zhang J. J., Hao Y. T., Zhang W. Z ., ACS Sustainable Chem. Eng., 2016, 4( 4), 2037— 2046 |
[88] | Zhu C. Z., Fu S. F., Song J.H., Shi Q. R., Su D., Engelhard M. H., Li X. L., Xiao D. D., Li D. S., Estevez L., Du D., Lin Y. H ., Small, 2017, 13( 15), 1603407 |
[89] | Kwok K. M. Y., Ong S. W. D., Chen L. W., Zeng H. C ., ACS Catal., 2018, 8( 1), 714— 724 |
[90] | Luo H., Zhou X. F., Ellingford C., Zhang Y., Chen S., Zhou K., Zhang D., Bowen C. R., Wan C. Y ., Chem. Soc. Rev., 2019, 48( 16), 4424— 4465 |
[91] | Bai F., Xu L., Zhai X. Y., Chen X., Yang W. S ., Adv. Ener. Mater., 2019,1902107 |
[92] | Tian X. L., Zhao X., Su Y. Q., Wang L. J., Wang H. M., Dang D., Chi B., Liu H. F., Hensen E. J. M., Lou X. W. D., Xia B. Y ., Science, 2019, 366( 6467), 850— 856 |
[93] | Yue Y., Juarez-Robles D., Mukherjee P. P., Liang H ., ACS Appl. Energy Mater., 2018, 1( 5), 2056— 2066 |
[94] | Hao H. Y., Wang X., Shao Z. Q., Yang R. J ., Chem. J. Chinese Universities, 2015, 36(9), 1838—1845 |
( 郝红英, 王茜, 邵自强, 杨荣杰 . 高等学校化学学报, 2015, 36(9), 1838—1845) | |
[95] | Xia Y. N., Yang P. D., Sun Y. G., Wu Y. Y., Mayers B., Gates B., Yin Y. D., Kim F., Yan H. Q ., Adv. Mater., 2003, 15( 5), 353— 389 |
[96] | Ding Y. L., Wen Y. R., Wu C., van Aken P. A., Maier J., Yu Y ., Nano Lett., 2015, 15( 2), 1388— 1394 |
[97] | Lee J. E., Yu S. H., Lee D. J., Lee D. C., Han S. I., Sung Y. E., Hyeon T ., Energy Environ. Sci., 2012, 5( 11), 9528— 9533 |
[98] | Liu P. C., Xu Y., Zhu K. J., Bian K., Wang J., Sun X., Gao Y. F., Luo H. J., Lu L., Liu J. S ., J. Mater. Chem. A, 2017, 5( 18), 8307— 8316 |
[99] | Chen Z., Augustyn V., Jia X. L., Xiao Q. F., Dunn B., Lu Y. F ., ACS Nano, 2012, 6( 5), 4319— 4327 |
[100] | Jian Z. L., Zhao B., Liu P., Li F. J., Zheng M. B., Chen M. W., Shi Y., Zhou H. S ., Chem. Commun., 2014, 50( 10), 1215— 1217 |
[101] | Wen Y., He K., Zhu Y. J., Han F. D., Xu Y. H., Matsuda I., Ishii Y., Cumings J., Wang C. S ., Nat. Commun., 2014, 5, 4033 |
[102] | Yang B. J., Chen J. T., Lei S. L., Guo R. S., Li H. X., Shi S. Q., Yan X. B ., Adv. Energy Mater., 2018, 8( 10), 1702409 |
[103] | Li H. S., Zhu Y., Dong S. Y., Shen L. F., Chen Z. J., Zhang X. G., Yu G. H ., Chem. Mater., 2016, 28( 16), 5753— 5760 |
[1] | 史海涵,吴香萍,彭辛哲,余国静,董朝阳,纪瑶瑶,杨思文,陈俊林,王锦,冉雪芹,杨磊,解令海,黄维. 一种基于风车格结构的有效降低内重组能的咔唑类格子化分子[J]. 高等学校化学学报, 2020, 41(7): 1670-1676. |
[2] | 侯春喜, 李逸佳, 王婷婷, 刘盛达, 闫腾飞, 刘俊秋. 弹性肽在超分子组装中的应用[J]. 高等学校化学学报, 2020, 41(6): 1163-1173. |
[3] | 白若男, 李青, 乔山林, 张春焕, 赵永生. 1,4-二咔唑基苯微米结构的可控制备及光波导性质[J]. 高等学校化学学报, 2020, 41(5): 967-971. |
[4] | 彭与煜,王煜,于鑫垚,曾巨澜,肖忠良,曹忠. 基于单(6-巯基-6-去氧)-β-环糊精修饰金电极对L-半胱氨酸的快速灵敏检测[J]. 高等学校化学学报, 2020, 41(2): 268-276. |
[5] | 李东,孙迎辉,王中舜,黄晶,吕男,江林. 大面积多元化表面等离激元金纳米粒子结构的制备[J]. 高等学校化学学报, 2020, 41(2): 221-227. |
[6] | 肖宇情,李申慧,汤晶,徐君,邓风. 金属有机框架材料的结构、 动力学行为和主客体相互作用的固体核磁共振研究[J]. 高等学校化学学报, 2020, 41(2): 204-220. |
[7] | 任伟, 田野, 邢令利, 杨岳溪, 丁彤, 李新刚. K促进的纳米片状水滑石衍生CoAlO金属氧化物催化碳烟燃烧[J]. 高等学校化学学报, 2019, 40(8): 1670-1678. |
[8] | 盛炳琛, 李从, 刘颖雅, 王安杰, 王瑶, 张箭, 刘伟旭. 微通道连续合成UiO-66系列改性MOF材料[J]. 高等学校化学学报, 2019, 40(7): 1365-1373. |
[9] | 高苗苗, 王成龙, 窦红静, 许国雄. 卡铂@葡聚糖纳米载体的自组装/聚合一步法制备及生物应用[J]. 高等学校化学学报, 2019, 40(6): 1301-1309. |
[10] | 王艳辉, 邹庆智, 朱有亮, 付翠柳, 黄以能, 李占伟, 孙昭艳. 软三嵌段两面神胶体粒子自组装行为的模拟研究[J]. 高等学校化学学报, 2019, 40(5): 1037-1042. |
[11] | 王稳, 陶霞芳, 吴赟炎, 赵南, 程晓农, 杨娟, 周亚洲. 三明治结构纳米银/氧化石墨烯基底的制备及SERS性能[J]. 高等学校化学学报, 2019, 40(4): 667-675. |
[12] | 杨艳艳, 谭佳宁, 冯素洋, 祁岳, 王杨, 丁元生, 曲小姝, 连丽丽, 于晓洋. 钒钨酸盐-CdS纳米粒子复合膜的制备与电致变色性能[J]. 高等学校化学学报, 2019, 40(4): 659-666. |
[13] | 陈艳, 董雪娇, 单桂晔. 脂质体@Ag/Au中空纳米壳层材料的制备及与H2O2的作用[J]. 高等学校化学学报, 2019, 40(4): 639-644. |
[14] | 唐波, 黄浩, 吴兵, 李旭, 王晓工. 自组装光致形变功能偶氮分子玻璃微球[J]. 高等学校化学学报, 2019, 40(3): 548-554. |
[15] | 贺洋洋, 李艺, 李宝宗, 杨永刚. 低浓度下的仿生矿化及其在对映体拆分中的应用[J]. 高等学校化学学报, 2019, 40(2): 393-402. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||