高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (1): 20240468.doi: 10.7503/cjcu20240468
• 综合评述 • 上一篇
张荡1, 孙小敏1(), 杨海跃1, 宋勃翰1, 丛萌1, 王宇新2, 丁锋2, 徐珊珊2, 毕赛3(
), 王磊1(
)
收稿日期:
2024-10-16
出版日期:
2025-01-10
发布日期:
2024-11-15
通讯作者:
王磊
E-mail:sxm15025664125@163.com;bisai11@126.com;leiwang_chem@hit.edu.cn
作者简介:
孙小敏, 女, 学士, 主要从事生物酶驱动的微纳米机器人方面的研究. E-mail: sxm15025664125@163.com基金资助:
ZHANG Dang1, SUN Xiaomin1(), YANG Haiyue1, SONG Bohan1, CONG Meng1, WANG Yuxin2, DING Feng2, XU Shanshan2, BI Sai3(
), WANG Lei1(
)
Received:
2024-10-16
Online:
2025-01-10
Published:
2024-11-15
Contact:
WANG Lei
E-mail:sxm15025664125@163.com;bisai11@126.com;leiwang_chem@hit.edu.cn
Supported by:
摘要:
为了解决生物酶不稳定、 易失活及纳米药物递送效率较低的问题, 研究人员将纳米酶的高效稳定催化作用与微纳米马达的自主运动能力相结合, 设计并制备了基于纳米酶的微纳米马达, 用于在病变部位主动 靶向递送药物并响应特定信号可控释放药物, 在药物递送应用中表现出巨大的潜力. 本文基于纳米酶马达 “动-控-用”的发展思路, 综合评述了代表性的构建微纳米马达的纳米酶, 探讨了微纳米马达的运动调控策略, 系统地梳理了基于纳米酶的微纳米马达在精准药物递送领域的前沿应用, 并对该技术在实际应用中面临的挑战和未来发展进行了总结与展望.
中图分类号:
TrendMD:
张荡, 孙小敏, 杨海跃, 宋勃翰, 丛萌, 王宇新, 丁锋, 徐珊珊, 毕赛, 王磊. 基于纳米酶的微纳米马达在智能药物递送中的应用. 高等学校化学学报, 2025, 46(1): 20240468.
ZHANG Dang, SUN Xiaomin, YANG Haiyue, SONG Bohan, CONG Meng, WANG Yuxin, DING Feng, XU Shanshan, BI Sai, WANG Lei. Application of Nanozyme-based Micro/nanomotors in Smart Drug Delivery. Chem. J. Chinese Universities, 2025, 46(1): 20240468.
Fig.2 Typical catalytic mechanism for peroxidase⁃like activity of nanozyme(A)[55], catalytic mechanisms for the CAT mimetic activity of nanoceria(B)[67], the SOD mimetic activity of nanoceria(C)[67] and mechanism of glucose oxidation catalyzed by Au NPs(D)[64](A) Copyright 2020, American Chemical Society; (B) Copyright 2019, the Royal Society of Chemistry. (C) Copyright 2019, the Royal Society of Chemistry.
Fig.3 Motion regulation strategies for micro/nanomotors based on nanozymes(A) Magnetically actuated peanut colloid motors[75]; (B) light responsive mechanism-switchable nanomotors[78]; (C) autonomous motion of bubble-Powered carbonaceous nanomotors[82]; (D) motion mechanism of the self-propelled submarine-like micromotors[86]. (A) Copyright 2018, American Chemical Society; (B) Copyright 2022, American Chemical Society; (C) Copyright 2020, American Chemical Society; (D) Copyright 2019, Elsevier Ltd.
Material | Mimic activity | Application | Ref. |
---|---|---|---|
MIL⁃88⁃ICG@ZIF⁃8⁃DOX | POD | Drug encapsulation and release | [ |
Pt⁃Mesoporous silica | CAT | Drug delivery and release | [ |
Pt/DOX | CAT | Enhance tissue penetration | [ |
Pt/mesoporous organosilica/hyaluronic acid | CAT | Enhance tumor penetration | [ |
Cu/N⁃doped mesoporous carbon | POD | Enhance tumor penetration and nanocatalytic therapy | [ |
Carbon/Manganese | POD | Enhance tumor penetration and chemodynamic therapy | [ |
Au⁃Pt | POD | Active cellular Targeting | [ |
ZIF⁃67@DOX⁃TPP | POD | Mitochondria⁃targeted cancer therapy | [ |
AptPDGF/Gold nanocups⁃Pt | POD | Targeted degradation of extracellular proteins | [ |
Macrophage membranes@MnO2⁃Au⁃mSiO2@Curcumin | CAT/SOD | Cascade⁃targeted treatment of neurological inflammation | [ |
P2W18Fe4 polyoxometalates @PDA@anti⁃EGFR | POD | Photothermal⁃catalytic tumor therapy | [ |
Au/Cu⁃CeO2@BSA | POD | Active photoacoustic imaging | [ |
Table 1 Brief summary of nanozyme-based micro/nanomotors applied in smart drug delivery
Material | Mimic activity | Application | Ref. |
---|---|---|---|
MIL⁃88⁃ICG@ZIF⁃8⁃DOX | POD | Drug encapsulation and release | [ |
Pt⁃Mesoporous silica | CAT | Drug delivery and release | [ |
Pt/DOX | CAT | Enhance tissue penetration | [ |
Pt/mesoporous organosilica/hyaluronic acid | CAT | Enhance tumor penetration | [ |
Cu/N⁃doped mesoporous carbon | POD | Enhance tumor penetration and nanocatalytic therapy | [ |
Carbon/Manganese | POD | Enhance tumor penetration and chemodynamic therapy | [ |
Au⁃Pt | POD | Active cellular Targeting | [ |
ZIF⁃67@DOX⁃TPP | POD | Mitochondria⁃targeted cancer therapy | [ |
AptPDGF/Gold nanocups⁃Pt | POD | Targeted degradation of extracellular proteins | [ |
Macrophage membranes@MnO2⁃Au⁃mSiO2@Curcumin | CAT/SOD | Cascade⁃targeted treatment of neurological inflammation | [ |
P2W18Fe4 polyoxometalates @PDA@anti⁃EGFR | POD | Photothermal⁃catalytic tumor therapy | [ |
Au/Cu⁃CeO2@BSA | POD | Active photoacoustic imaging | [ |
Fig.4 Nanozymes⁃based micro/nanomotors in intelligent drug loading and release(A) MOF nanomotors for pH and NIR-responsive drug release[88]; (B) Janus Pt-mesoporous silica nanomotors for smart drug delivery[89]. (A) Copyright 2020, Elsevier B. V.; (B) Copyright 2021, American Chemical Society.
Fig.5 Nanozymes⁃based micro/nanomotors in enhanced tissue penetration and cell uptake(A) Pt/DOX nanomotors enhance penetration in the deep tumor by positive chemotaxis[90]; (B) Janus mesoporous nanomotors for improving tumor penetration by thermodynamic-controlled coating method[91]; (C) copper single-atom jellyfish-like nanomotors for enhanced tumor penetration[92]; (D) bioinspired jellyfish-like carbon/manganese nanomotors with H2O2 and NIR light dual-propulsion for enhanced tumor penetration[93]. (A) Copyright 2022, American Chemical Society; (B) Copyright 2021, American Chemical Society; (C) Copyright 2023, American Chemical Society; (D) Copyright 2023, Elsevier B.V.
Fig.6 Application examples of nanozymes⁃based micro/nanomotors in targeted transportation and disease treatment(A) Schematic illustration of the nanozyme-powered cup-shaped nanomotor for active cellular targeting[94]; (B) active mitochondria-targeted cancer therapy and characterization of ZIF-67@DOX-TPP nanorobots[95]; (C) working principle of MotorTACs for extracellular protein degradation[96]; (D) schematic illustration of cascade-targeting anti-inflammatory therapy for TBI[97]. (C) Copyright 2024, Wiley‐VCH.
1 | Magar K. T., Boafo G. F., Li X. T., Chen Z. J., He W., Chin. Chem. Lett., 2022, 33(2), 587—596 |
2 | He H. S., Lu Y., Qi J. P., Zhu Q. G., Chen Z. J., Wu W., Acta Pharm. Sin. B, 2019, 9(1), 36—48 |
3 | Li Y., Ji T. J., Torre M., Shao R., Zheng Y. Q., Wang D. L., Li X. Y., Liu A. D., Zhang W., Deng X. R., Yan R., Kohane D. S., Nat. Commun., 2023, 14(1), 6659 |
4 | Nel J., Elkhoury K., Velot É., Bianchi A., Acherar S., Francius G., Tamayol A., Grandemange S., Arab⁃Tehrany E., Bioact. Mater., 2023, 24, 401—437 |
5 | Tabet A., Wang C., Adv. Healthc. Mater., 2019, 8(6), 1800908 |
6 | Zheng Y., Wyman I. W., Polymers, 2016, 8(5), 198 |
7 | Li W. J., Xu W. W., Zhang S. Y., Li J., Zhou J., Tian D. M., Cheng J., Li H. B., J. Agric. Food Chem., 2022, 70(40), 12746—12759 |
8 | Cheng H., Jiang Z. J., Sun C. K., Wang Z., Han G. C., Chen X., Li T. Y., Fan Z. C., Zhang F., Yang X. Y., Lv L. Y., Zhang H. Q., Zhou J. P., Ding Y., Chem. Eng. J., 2022, 427, 131672 |
9 | Ang C. Y., Tan S. Y., Teh C., Lee J. M., Wong M. F. E., Qu Q. Y., Poh L. Q., Li M. H., Zhang Y. Y., Korzh V., Zhao Y. L., Small, 2017, 13(7), 1602379 |
10 | Colson Y. L., Grinstaff M. W., Adv. Mater., 2012, 24(28), 3878—3886 |
11 | Tan Q. X., Zhao S. J., Xu T., Wang Q., Zhang M., Yan L., Chen X. F., Lan M. H., Coord. Chem. Rev., 2023, 494, 215344 |
12 | Prabhakar U., Maeda H., Jain R. K., Sevick⁃Muraca E. M., Zamboni W., Farokhzad O. C., Barry S. T., Gabizon A., Grodzinski P., Blakey D. C., Cancer Res., 2013, 73(8), 2412—2417 |
13 | Ye J. M., Fan Y. Y., Niu G. L., Zhou B. L., Kang Y., Ji X. Y., Nano Today, 2024, 55, 102212 |
14 | Zhang S. H., Zhu C. R., Huang W. T., Liu H., Yang M. Z., Zeng X. J., Zhang Z. Z., Liu J. J., Shi J. J., Hu Y. R., Shi X. F., Wang Z. H., J. Control. Release, 2023, 360, 514—527 |
15 | Fraire J. C., Guix M., Hortelao A. C., Ruiz⁃González N., Bakenecker A. C., Ramezani P., Hinnekens C., Sauvage F., de Smedt S. C., Braeckmans K., Sánchez S., ACS Nano, 2023, 17(8), 7180—7193 |
16 | Wang J. H., Liu J. J., Sümbelli Y., Shao J. X., Shi X. Y., van Hest J. C. M., J. Control. Release, 2024, 372, 59—68 |
17 | Ren J. Y., Hu P. C., Ma E. H., Zhou X. Y., Wang W. J., Zheng S. H., Wang H., Appl. Mater. Today, 2022, 27, 101445 |
18 | Wang L., Huang Y., Xu H., Chen S., Chen H., Lin Y., Wang X., Liu X., Sánchez S., Huang X., Mater. Today Chem., 2022, 26, 101059 |
19 | Wang L., Villa K., Environ. Sci. Nano, 2021, 8(12), 3440—3451 |
20 | Wang L., Liu Y. J., He J., Hourwitz M. J., Yang Y. L., Fourkas J. T., Han X. J., Nie Z. H., Small, 2015, 11(31), 3762—3767 |
21 | Wang L., Song S. D., van Hest J., Abdelmohsen L. K. E. A., Huang X., Sánchez S., Small. 2020, 16(27), 1907680 |
22 | Chen H. X., Li W. R., Lin Y. P., Wang L., Liu X. M., Huang X., Angew. Chem. Int. Ed., 2020, 59(39), 16953—16960 |
23 | Mu W. J., Jia L. Y., Zhou M. S., Wu J. Z., Lin Y. Y., Mann S., Qiao Y., Nat. Chem., 2024, 16(2), 158—167 |
24 | Wang Y., Liu Y. H., Li Y., Xu D. D., Pan X., Chen Y. D., Zhou D. K., Wang B., Feng H. H., Ma X., Research, 2020, 2020, 7962024 |
25 | Wang J. J., Dong R. F., Wu H. Y., Cai Y. P., Ren B. Y., Nano⁃micro Lett., 2020, 12(1), 11 |
26 | Wang X., Zhang D., Bai Y., Zhang J., Wang L., Chem. Asian J., 2022, 17(16), e202200498 |
27 | Wu Z. Y., Chen L., Guo W. Y., Wang J., Ni H. Y., Liu J. N., Jiang W. T., Shen J., Mao C., Zhou M., Wan M. M., Nat. Nanotechnol., 2024, 19(9), 1375—1385 |
28 | Chen H., Li T., Liu Z. Y., Tang S. W., Tong J. T., Tao Y. F., Zhao Z. N., Li N., Mao C., Shen J., Wan M. M., Nat. Commun., 2023, 14(1), 941 |
29 | Sun Z., Hou Y., BMEMat., 2023, 1(2), e12012 |
30 | Wang S. H., Xu J., Zhou Q., Geng P. W., Wang B., Zhou Y. F., Liu K., Peng F., Tu Y. F., Adv. Healthc. Mater., 2021, 10(13), 2100335 |
31 | Lin R. Y., Yu W. Q., Chen X. C., Gao H. L., Adv. Healthc. Mater., 2021, 10(1), 2001212 |
32 | Shi J. R., Wang Y., Zhang L. J., Wang F., Miao Y., Yang J. L., Wang L. P., Shi S., Ma L. L., Duan J. Y., Int. J. Biol. Macromol., 2024, 270, 132028 |
33 | Hortelao A. C., Carrascosa R., Murillo⁃Cremaes N., Patino T., Sánchez S., ACS Nano, 2019, 13(1), 429—439 |
34 | O’Callaghan J. A., Lee D., Hammer D. A., ACS Appl. Mater. Interfaces, 2023, 15(44), 50799—50808 |
35 | Hortelao A. C., Simó C., Guix M., Guallar⁃Garrido S., Julián E., Vilela D., Rejc L., Ramos⁃Cabrer P., Cossío U., Gómez⁃Vallejo V., Patiño T., Llop J., Sánchez S., Sci. Robot, 2021, 6(52), 2823 |
36 | Wu M. Y., Liu S. P., Liu Z. C., Huang F. B., Xu X. M., Shuai Q., Colloids Surf. B: Biointerfaces, 2022, 212, 112353 |
37 | Kutorglo E. M., Elashnikov R., Rimpelova S., Ulbrich P., Říhová Ambrožová J., Svorcik V., Lyutakov O., ACS Appl. Mater. Interfaces, 2021, 13(14), 16173—16181 |
38 | Gao C. Y., Zhou C., Lin Z. H., Yang M. C., He Q., ACS Nano, 2019, 13(11), 12758—12766 |
39 | Wang L., Lin Y. P., Zhou Y. T., Xie H., Song J. M., Li M., Huang Y. D., Huang X., Mann S., Angew. Chem. Int. Ed., 2019, 58(4), 1067—1071 |
40 | Wang L., Hortelão A. C., Huang X., Sánchez S., Angew. Chem. Int. Ed., 2019, 58(24), 7992—7996 |
41 | Wang L., Marciello M., Estévez⁃Gay M., Rodriguez P. E. D. S., Morato Y. L., Iglesias⁃Fernández J., Huang X., Osuna S., Filice M., Sánchez S., Angew. Chem. Int. Ed., 2020, 59(47), 21080—21087 |
42 | Zhang D., Wang X., Wang L., Prog. Chem., 2022, 34(9), 2035—2050 |
43 | Gao L. Z., Zhuang J., Nie L., Zhang J. B., Zhang Y., Gu N., Wang T. H., Feng J., Yang D. L., Perrett S., Yan X., Nat. Nanotechnol., 2007, 2(9), 577—583 |
44 | Wang Z. R., Zhang R. F., Yan X. Y., Fan K. L., Mater. Today, 2020, 41, 81—119 |
45 | Su L., Qin S. N., Xie Z. J., Wang L., Khan K., Tareen A. K., Li D. F., Zhang H., Coord. Chem. Rev., 2022, 473, 214784 |
46 | Shamsabadi A., Haghighi T., Carvalho S., Frenette L. C., Stevens M. M., Adv. Mater., 2024, 36(10), 2300184 |
47 | Phan⁃Xuan T., Schweidler S., Hirte S., Schüller M., Lin L., Khandelwal A., Wang K., Schützke J., Reischl M., Kübel C., Hahn H., Bello G., Kirchmair J., Aghassi⁃Hagmann J., Brezesinski T., Breitung B., Dailey L. A., ACS Nano, 2024, 18(29), 19024—19037 |
48 | Fan H. Z., Zheng J. J., Xie J. Y., Liu J. W., Gao X. F., Yan X. Y., Fan K. L., Gao L. Z., Adv. Mater., 2024, 36(10), 2300387 |
49 | Wong K. Y., Wong M. S., Liu J. W., Adv. Healthc. Mater., 2024, 2401309 |
50 | Zhang Y. H., Liu W. L., Wang X. Y., Liu Y. F., Wei H., Small, 2023, 19(13), 2204809 |
51 | Cui M., Xu B., Wang L., BMEMat., 2024, 2(1), e12043 |
52 | Attar F., Shahpar M. G., Rasti B., Sharifi M., Saboury A. A., Rezayat S. M., Falahati M., J. Mol. Liq., 2019, 278, 130—144 |
53 | Hamed E. M., Rai V., Li S. F. Y., Chemosphere, 2024, 346, 140557 |
54 | Wang X. Y., Wang H., Zhou S. Q., J. Phys. Chem. Lett., 2021, 12(48), 11751—11760 |
55 | Shen X. M., Wang Z. Z., Gao X. F., Zhao Y. L., ACS Catal., 2020, 10(21), 12657—12665 |
56 | Yang S. S., Lian G. J., Mol. Cell. Biochem., 2020, 467(1/2), 1—12 |
57 | Shi X. D., Lv J., Deng S. L., Zhou F., Mei J. G., Zheng L., Zhang J., Adv. Sci., 2024, 11(20), 2305823 |
58 | Zhu X., Q. Wang X. X., Liu Z. M., Jiang B., He Z. H., Liu S. J., Wu Y. H., Wu Z. X., Zhang T. T., Liu M. Y., Li K., Niu X. S., Gao Y. F., Adv. Funct. Mater., 2024, 34(39), 2401576 |
59 | Wojcieszak R., Cuccovia I. M., Silva M. A., Rossi L. M., J. Mol. Catal. A: Chem., 2016, 422, 35—42 |
60 | Ragg R., Natalio F., Tahir M. N., Janssen H., Kashyap A., Strand D., Strand S., Tremel W., ACS Nano, 2014, 8(5), 5182—5189 |
61 | Liu J., Meng L. J., Fei Z. F., Dyson P. J., Jing X. N., Liu X., Biosens. Bioelectron., 2017, 90, 69—74 |
62 | Li M. H., Chen J. X., Wu W. W., Fang Y. X., Dong S. J., J. Am. Chem. Soc., 2020, 142(36), 15569—15574 |
63 | Peng Y. W., Huang M. C., Chen L. J., Gong C. T., Li N. J., Huang Y., Cheng C. M., Nano Res., 2022, 15(10), 8783—8790 |
64 | Chen J. X., Ma Q., Li M. H., Chao D. Y., Huang L., Wu W. W., Fang Y. X., Dong S. J., Nat. Commun., 2021, 12(1), 3375 |
65 | Kajita M., Hikosaka K., Iitsuka M., Kanayama A., Toshima N., Miyamoto Y., Free Radic. Res., 2007, 41(6), 615—626 |
66 | Xu D. T., Wu L. Y., Yao H. D., Zhao L. N., Small, 2022, 18(37), 2203400 |
67 | Wang Z. Z., Shen X. M., Gao X. F., Zhao Y. L., Nanoscale, 2019, 11(28), 13289—13299 |
68 | Nakai Y., Sugai N., Kusano H., Morita Y., Komatsu T., ACS Appl. Nano Mater., 2019, 2(8), 4891—4899 |
69 | Zhong H. Q., Zhang Z. T., Zhou Y., Wu L. J., Ke P., Lu Y. Y., Dai Q., Bao X. Y., Xia Y. Y., Yang Q. Y., Tan X., Wei Q. C., Xu W. H., Han M., Ma L., ACS Appl. Mater. Interfaces, 2022, 14(33), 38172—38184 |
70 | Sozarukova M. M., Kozlova T. O., Beshkareva T. S., Popov A. L., Kolmanovich D. D., Vinnik D. A., Ivanova O. S., Lukashin A. V., |
Baranchikov A. E., Ivanov V. K., Nanomaterials, 2024, 14(9), 769 | |
71 | Mikheev I. V., Sozarukova M. M., Proskurnina E. V., Kareev I. E., Proskurnin M. A., Molecules, 2020, 25(11), 2506 |
72 | Wang Z. Z., Wu J. X., Zheng J. J., Shen X. M., Yan L., Wei H., Gao X. F., Zhao Y. L., Nat. Commun., 2021, 12(1), 6866 |
73 | Zhang S., Chen J., Lian M. L., Yang W. S., Chen X., Chem. Eng. J., 2022, 446, 136794 |
74 | Zhou T., Zhu K., Yang Z. Y., Qian Z. T., Zong S. F., Cui Y. P., Wang Z. Y., Small, 2024, 20(37), 2311207 |
75 | Lin Z. H., Fan X. J., Sun M. M., Gao C. Y., He Q., Xie H., ACS Nano, 2018, 12(3), 2539—2545 |
76 | Xie H., Sun M. M., Fan X. J., Lin Z. H., Chen W. N., Wang L., Dong L. X., He Q., Sci. Robot, 2019, 4(28), 8006 |
77 | Feng K., Shen W. Q., Chen L., Gong J., Palberg T., Qu J. P., Niu R., Small, 2024, 20(18), 2306798 |
78 | Liu T. Y., Xie L., Zeng J., Yan M., Qiu B. L., Wang X. Y., Zhou S., Zhang X., Zeng H., Liang Q. R., He Y. J., Liang K., Liu J., |
Velliou E., Jiang L., Kong B., ACS Appl. Mater. Interfaces, 2022, 14(13), 15517—5528 | |
79 | Zhou D. K., Li Y. C., Xu P. T., McCool N. S., Li L. Q., Wang W., Mallouk T. E., Nanoscale, 2017, 9(3), 1315—1315 |
80 | Zhou D. K., Li Y. C., Xu P. T., Ren L. Q., Zhang G. Y., Mallouk T. E., Li L. Q., Nanoscale, 2017, 9(32), 11434—11438 |
81 | Dai B. H., Wang J. Z., Xiong Z., Zhan X. J., Dai W., Li C. C., Feng S. P., Tang J. Y., Nat. Nanotechnol., 2016, 11(12), 1087—1092 |
82 | Zhou C., Gao C. Y., Lin Z. H., Wang D. L., Li Y., Yuan Y., Zhu B. H., He Q., Langmuir, 2020, 36(25), 7039—7045 |
83 | Ji Y. X., Lin X. K., Wu Z. G., Wu Y. J., Gao W., He Q., Angew. Chem. Int. Ed., 2019, 58(35), 12200—12205 |
84 | Gao S., Hou J. W., Zeng J., Richardson J. J., Gu Z., Gao X., Li D. W., Gao M., Wang D. W., Chen P., Chen V., Liang K., Zhao D. Y., Kong B., Adv. Funct. Mater., 2019, 29(18), 1808900 |
85 | Hu J. Y., Cao J. J., Lin J. W., Xu L. L., Nanomaterials, 2024, 14(6), 519 |
86 | Guo Z. Y., Wang T., Rawal A., Hou J. W., Cao Z. B., Zhang H., Xu J. T., Gu Z., Chen V., Liang K., Mater. Today, 2019, 28, 10—16 |
87 | Yang H. Y., Wang L., Huang X., Coord. Chem. Rev., 2023, 495, 215372 |
88 | Wu B. Y., Fu J. T., Zhou Y. X., Luo S. L., Zhao Y. T., Quan G. L., Pan X., Wu C. B., Acta Pharm. Sin. B, 2020, 10(11), 2198—2211 |
89 | Díez P., Lucena⁃Sánchez E., Escudero A., Llopis⁃Lorente A., Villalonga R., Martínez⁃Máñez R., ACS Nano, 2021, 15(3), 4467—4480 |
90 | Zhong H. Q., Zhang Z. T., Zhou Y., Wu L. J., Ke P., Lu Y. Y., Dai Q., Bao X. Y., Xia Y. Y., Yang Q. Y., Tan X., Wei Q. C., Xu W. H., Han M., Ma L., ACS Appl. Mater. Interfaces, 2022, 14(33), 38172—38184 |
91 | Chen K., Peng X., Dang M., Tao J., Ma J. B., Li Z. J., Zheng L. H., Su X. D., Wang L. H., Teng Z. G., ACS Appl. Mater. Interfaces, 2021, 13(43), 51297—51311 |
92 | Xing Y., Xiu J. D., Zhou M. Y., Xu T. L., Zhang M. Q., Li H., Li X. Y., Du X., Ma T. Y., Zhang X. J., ACS Nano, 2023, 17(7), 6789—6799 |
93 | Xing Y., Zhou M. Y., Liu X. M., Qiao M. H., Zhou L. P., Xu T. L., Zhang X. J., Du X., Chem. Eng. J., 2023, 461, 142142 |
94 | Wang X., Ye Z. J., Lin S., Wei L., Xiao L. H., Research, 2022, 2022, 9831012 |
95 | Peng X. Q., Tang S. S., Tang D. T., Zhou D. W., Li Y. Y., Chen Q. W., Wan F. C., Lukas H., Han H., Zhang X. J., Gao W., Wu S., Sci. Adv., 2023, 9(23), 1736 |
96 | Ning Y. J., Li B., Liu Y. X., Lu Y. W., Huang X. D., Liu B. H., Small, 2024, 2405209 |
97 | Ye J. M., Fan Y. Y., She Y. G., Shi J. C., Yang Y. W., Yuan X., Li R. Y., Han J. W., Liu L. T., Kang Y., Ji X. Y., Adv. Sci., 2024, 11(22), 2310211 |
98 | Tang M. L., Ni J. T., Yue Z. Y., Sun T. D., Chen C. X., Ma X., Wang L., Angew. Chem. Int. Ed., 2024, 63(6), e202315031 |
99 | Zhang X. L., Liu C., Lyu Y. S., Xing N. N., Li J., Song K., Yan X. H., J. Colloid Interface Sci., 2023, 648, 457—472 |
[1] | 唐玉玺, 杨启, 直鑫鹏, 陈梦媛, 刘思源, 李嘉昌, 刘梓洋, 贾会敏, 仝玉萍, 何伟伟. 组分可调的PdRh双金属纳米酶用于亚硝酸盐精准高效比色传感[J]. 高等学校化学学报, 2025, 46(1): 243. |
[2] | 梁惠闲, 王淼, 张雨璨, 白丽, 李雪妹, 于法标, 程子译, 赵琳璐. 基于Ag2S量子点的光热治疗协同药物治疗在动脉粥样硬化中的应用[J]. 高等学校化学学报, 2025, 46(1): 196. |
[3] | 陈俊年, 张海峰, 王海兵, 杨火诚, 罗忠. 基于超分子纳米递送系统的精准医疗研究进展[J]. 高等学校化学学报, 2025, 46(1): 20240267. |
[4] | 何扩, 丁彬彬, 马平安, 林君. 纳米材料诱导肿瘤细胞铜死亡的研究进展[J]. 高等学校化学学报, 2025, 46(1): 20230525. |
[5] | 严子谅, 李蓓, 代云路. 基于多酚的超分子纳米药物递送系统的研究进展[J]. 高等学校化学学报, 2025, 46(1): 20240260. |
[6] | 孙玉洁, 牛振田, 佟昊轩, 胡悦, 俞丙然, 徐福建. 开环制备聚二硫化物及其在药物递送方面的应用[J]. 高等学校化学学报, 2025, 46(1): 20240116. |
[7] | 黄雨晴, 刘妍, 张宏丽, 林森, 孙仕勇, GOLUBEV Evgeny, 吕瑞, KOTOVA Olga, KOTOVA Elena. GOx@Fe3O4-HNTs微囊反应器的构筑及多酶级联催化性能[J]. 高等学校化学学报, 2024, 45(1): 20230403. |
[8] | 李婷婷, 岳彩凤, 霍媛青, 纪慧芳, 张瑞平. 无金属黑色素纳米酶用于肝纤维化治疗[J]. 高等学校化学学报, 2024, 45(1): 20230411. |
[9] | 盛劲菡, 郑琪臻, 汪铭. CRISPR/Cas9基因编辑非病毒递送系统[J]. 高等学校化学学报, 2023, 44(3): 20220344. |
[10] | 艾晏如, 蔡其君, 王娇, 张语桐, 白宇佳, 陈晓明, 吕瑞. 含铈类碳酸酐酶纳米酶的构筑及在二氧化碳固定中的应用[J]. 高等学校化学学报, 2023, 44(12): 20230355. |
[11] | 王慧, 赵德偲, 杨乃亮, 王丹. 智能中空药物载体的门控设计[J]. 高等学校化学学报, 2023, 44(1): 20220237. |
[12] | 杨霁野, 孙大吟, 王妍, 谷安祺, 叶一兰, 丁书江, 杨振忠. 若干典型中空结构材料的模板合成与应用进展[J]. 高等学校化学学报, 2023, 44(1): 20220665. |
[13] | 何贝贝, 杨葵华, 吕瑞. 锰-铜双金属层状硅酸盐纳米酶的构筑及类酶活性[J]. 高等学校化学学报, 2022, 43(8): 20220150. |
[14] | 仵宇帅, 尚颖旭, 蒋乔, 丁宝全. 可控自组装DNA折纸结构作为药物载体的研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220179. |
[15] | 沙蒙, 许维庆, 吴志超, 顾文玲, 朱成周. 单原子材料类酶催化及生物医学应用研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220077. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||