• 综合评述 •
收稿日期:
2020-08-17
出版日期:
2020-12-14
发布日期:
2020-12-14
通讯作者:
许华平
E-mail:xuhuaping@tsinghua.edu.cn
基金资助:
Received:
2020-08-17
Online:
2020-12-14
Published:
2020-12-14
Contact:
XU Huaping
E-mail:xuhuaping@tsinghua.edu.cn
Supported by:
摘要:
硒是人体必需的一种微量元素, 本课题组近年的研究表明含硒化学键具有诸多独特的化学性质. 二硒键具有氧化还原双重响应性, 同时是一类光响应的动态共价键, 能够在可见光辐照下发生可逆的交换反应. 将含硒化学键这些独特的性质与表界面化学相结合可以赋予体系独特的响应行为. 本文综合评述了本课题组近年来在含硒表界面化学领域的研究进展: 采用单分子力谱揭示了含硒化学键相互作用的力学规律; 通过表界面化学实现了二硒键动态平衡的调控; 基于二硒键氧化还原及可见光响应性实现了表界面可逆修饰、 二维材料功能化及层层组装膜材料的制备, 在生物医用、 液体输运等领域具有潜在应用价值.
中图分类号:
夏嘉豪, 许华平. 含 硒 表 界 面 化 学[J]. 高等学校化学学报, doi: 10.7503/cjcu20200572.
XIA Jiahao, XU Huaping. Selenium-containing Surface/interface Chemistry[J]. Chemical Journal of Chinese Universities, doi: 10.7503/cjcu20200572.
Fig.2 Single molecule force spectroscopy of gold?chalcogen interaction[29](A) The structure of sulfide, selenide, telluride containing A?B?A type of polymer; (B) single chain stretching of PEG?PUX?PEG from the gold substrate, from left to right, X=S, Se, Te, respectively; (C) typical force?extension curves for the breaking of Au?S, Au?Se, Au?Te interactions(from left to right); the black dashed lines are worm?like chain fits; (D) estimations of distance between adjacent sawtooth peaks in the stretching curves of (C); (E) force distributions of the sawtooth peaks for the breaking of Au?S, Au?Se, Au?Te interactions(from left to right).Copyright 2019, Wiley-VCH.
Fig.3 Diselenide interface exchange reaction and the modulation of dynamic equilibrium[38](A) Scheme of diselenide interface exchange reaction and the modulation of dynamic equilibrium; (B) oil/water interface diselenide exchange model based on pendant drop test; (C) DLS and TEM results of mPEGSeSePS assemblies; (D) GPC spectra before and after light irradiation.Copyright 2016, the Royal Society of Chemistry.
Fig.4 Osmotic pressure response of diselenide?containing polymeric vesicles and its controlled release application[40](A) Scheme of osmotic pressure response of diselenide?containing polymeric vesicles; (B) synthesis of two types of polymers mPEGSeSePS and mPEGCOOPS; (C) SEM images of mPEGSeSePS assemblies before(left) and after(right) adding NaCl; (D) TEM images of mPEGSeSePS assemblies before(left) and after(right) adding NaCl; (E) 1H NMR spectra of mPEGSeSePS assemblies with and without NaCl; (F) GPC spectra of mPEGSeSePS assemblies with and without NaCl.Copyright 2019, American Chemical Society.
Fig.5 Surface modification based on diselenide dynamic chemistry[41](A) Scheme of the surface modification based on diselenide dynamic chemistry; (B) characterization of surface Se element distribution by ToF?IMS; (C) XPS Se3d spectrum of PDMS?NHCOSeSe; (D) reversible adjustment of surface wettability via diselenide exchange reaction between hydrophilic and hydrophobic diselenide compounds; (E) light driven liquid motion based on diselenide exchange reaction.Copyright 2019, Wiley?VCH.
Fig.6 Using LbL to construct selenium?containing nanofilm materials[50](A) Schematic demonstration of the preparation steps; (B) response of the film to H2O2 monitored by UV?Vis spectra; (C) the ability of the film to decrease oxygen radicals in water for different numbers of build?up steps.Copyright 2013, Wiley?VCH.
1 | Boyd R., Nat. Chem., 2011, 3(7), 570 |
2 | Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G., Science, 1973, 179(4073), 588—590 |
3 | Mugesh G., Singh H. B., Chem. Soc. Rev., 2000, 29(5), 347—357 |
4 | Mugesh G., du Mont W. W., Sies H., Chem. Rev., 2001, 101(7), 2125—2179 |
5 | Cai X., Wang C., Yu W., Fan W., Wang S., Shen N., Wu P., Li X., Wang F., Sci. Rep., 2016, 6, 19213 |
6 | Long J. A., Large R. R., Lee M. S. Y., Benton M. J., Danyushevsky L. V., Chiappe L. M., Halpin J. A., Cantrill D., Lottermoser B., Gondwana Res., 2016, 36, 209—218 |
7 | Ma N., Li Y., Xu H. P., Wang Z. Q., Zhang X., J. Am. Chem. Soc., 2010, 132(2), 442—443 |
8 | Xu H. P., Cao W., Zhang X., Acc. Chem. Res., 2013, 46(7), 1647—1658 |
9 | Cao W., Li Y., Yi Y., Ji S. B., Zeng L. W., Sun Z., Xu H. P., Chem. Sci., 2012, 3(12), 3403—3408 |
10 | Cao W., Zhang X., Miao X., Yang Z. M., Xu H. P., Angew. Chem., Int. Ed., 2013, 52(24), 6233—6237 |
11 | Cao W., Gu Y. W., Meineck M., Xu H. P., Chem. Asian J., 2014, 9(1), 48—57 |
12 | Cao W., Wang L., Xu H. P., Nano Today, 2015, 10(6), 717—736 |
13 | Cao W., Xu H. P., Mater. Chem. Front., 2019, 3(10), 2010—2017 |
14 | Yi Y., Xu H. P., Wang L., Cao W., Zhang X., Chem. Eur. J., 2013, 19(29), 9506—9510 |
15 | Xia J. H., Li T. Y., Lu C. J., Xu H. P., Macromolecules, 2018, 51(19), 7435—7455 |
16 | Ji S. B., Xia J. H., Xu H. P., ACS Macro Lett., 2016, 5(1), 9—13 |
17 | Ji S. B., Cao W., Yu Y., Xu H. P., Adv. Mater., 2015, 27(47), 7740—7745 |
18 | Ji S. B., Fan F. Q., Sun C. X., Yu Y., Xu H. P., ACS Appl. Mater. Interfaces, 2017, 9(38), 33169—33175 |
19 | Fan F. Q., Liu C., Wang S., Lv J., Li W., Fu Y., Xu H. P., J. Mater. Chem. C, 2019, 7(35), 10777—10782 |
20 | Liu C., Fan Z. Y., Tan Y. Z., Fan F. Q., Xu H. P., Adv. Mater., 2020, 32(12), 1907569 |
21 | Russell T. P., Science, 2002, 297(5583), 964—967 |
22 | Zhang X., Liu C., Wang Z., Polymer, 2008, 49(16), 3353—3361 |
23 | Zhang W. K., Zhang X., Prog. Polym. Sci., 2003, 28(8), 1271—1295 |
24 | Beyer M. K., Clausen⁃Schaumann H., Chem. Rev., 2005, 105(8), 2921—2948 |
25 | Grandbois M., Beyer M., Rief M., Clausen⁃Schaumann H., Gaub H. E., Science, 1999, 283(5408), 1727—1730 |
26 | Zhang Y. H., Liu C. J., Shi W. Q., Wang Z. Q., Dai L. M., Zhang X., Langmuir, 2007, 23(15), 7911—7915 |
27 | Love J. C., Estroff L. A., Kriebel J. K., Nuzzo R. G., Whitesides G. M., Chem. Rev., 2005, 105(4), 1103—1170 |
28 | Boisselier E., Astruc D., Chem. Soc. Rev., 2009, 38(6), 1759—1782 |
29 | Xiang W. T., Li Z. D., Xu C. Q., Li J., Zhang W. K., Xu H. P., Chem. Asian J., 2019, 14(9), 1481—1486 |
30 | Lehn J. M., Chem. Eur. J., 1999, 5(9), 2455—2463 |
31 | Corbett P. T., Leclaire J., Vial L., West K. R., Wietor J. L., Sanders J. K. M., Otto S., Chem. Rev., 2006, 106(9), 3652—3711 |
32 | Ji S. B., Cao W., Yu Y., Xu H. P., Angew. Chem., Int. Ed., 2014, 53(26), 6781—6785 |
33 | Fan F. Q., Ji S. B., Sun C. X., Liu C., Yu Y., Fu Y., Xu H. P., Angew. Chem., Int. Ed., 2018, 57(50), 16426—16430 |
34 | Liu C., Xia J. H., Ji S. B., Fan Z. Y., Xu H. P., Chem. Commun., 2019, 55(19), 2813—2816 |
35 | Zhao P., Xia J. H., Cao M. Q., Xu H. P., ACS Macro Lett., 2020, 9(2), 163—168 |
36 | Kildahl N. K., J. Chem. Educ., 1995, 72(5), 423—424 |
37 | Xia J. H., Li H. B., Xu H. P., Acta Chim. Sin., 2020, 51(2), 205—213(夏嘉豪, 李宏斌, 许华平. 高分子学报, 2020, 51(2), 205—213) |
38 | Xia J. H., Ji S. B., Xu H. P., Polym. Chem., 2016, 7(44), 6708—6713 |
39 | Erne P. M., van Bezouwen L. S., Stacko P., van Dijken D. J., Chen J., Stuart M. C., Boekema E. J., Feringa B. L., Angew. Chem., Int. Ed., 2015, 54(50), 15122—15127 |
40 | Xia J. H., Zhao P., Pan S. J., Xu H. P., ACS Macro Lett., 2019, 8(6), 629—633 |
41 | Xia J. H., Zhao P., Zheng K., Lu C. J., Yin S. C., Xu H. P., Angew. Chem., Int. Ed., 2019, 58(2), 542—546 |
42 | Lerf A., He H. Y., Forster M., Klinowski J., J. Phys. Chem. B, 1998, 102(23), 4477—4482 |
43 | Chen D., Feng H., Li J., Chem. Rev., 2012, 112(11), 6027—6053 |
44 | Dreyer D. R., Jia H. P., Bielawski C. W., Angew. Chem., Int. Ed., 2010, 49(38), 6813—6816 |
45 | Voylov D., Saito T., Lokitz B., Uhrig D., Wang Y., Agapov A., Holt A., Bocharova V., Kisliuk A., Sokolov A. P., ACS Macro Lett., 2016, 5(2), 199—202 |
46 | Xia J. H., Li F., Ji S. B., Xu H. P., ACS Appl. Mater. Interfaces, 2017, 9(25), 21413—21421 |
47 | Iler R. K., J. Colloid Interface Sci., 1966, 21(6), 569—594 |
48 | Decher G., Science, 1997, 277(5330), 1232 |
49 | Zhang X., Shen J. C., Adv. Mater., 1999, 11(13), 1139—1143 |
50 | Ji S. B., Cao W., Xu H. P., Part. Part. Syst. Char., 2013, 30(12), 1034—1038 |
51 | Ren H. F., Wu Y. T., Li Y., Cao W., Sun Z. W., Xu H. P., Zhang X., Small, 2013, 9(23), 3981—3986 |
[1] | 黄文娟, 候华毅, 陈相柏, 翟天佑. 化学气相沉积法制备InSe纳米片及其近红外光探测性能[J]. 高等学校化学学报, 2020, 41(4): 682-689. |
[2] | 张鑫宇, 王红, 方云, 樊晔. 共轭亚油酸修饰Fe3O4纳米颗粒的刺激响应性[J]. 高等学校化学学报, 2020, 41(11): 2519-2525. |
[3] | 王星火,汤钧,杨英威. 由聚合物门控的介孔二氧化硅基刺激响应性药物递送系统[J]. 高等学校化学学报, 2020, 41(1): 28-43. |
[4] | 张晓鹏, 牛雪利, 高贺梅, 范学森, 张贵生. 硒催化羰基化合成1,3,4-噻二唑-2-氨基甲酸酯[J]. 高等学校化学学报, 2019, 40(8): 1637-1642. |
[5] | 王斌, 王晓红, 段莉梅, 许良, 赵鹏, 菅金鹏, 刘宗瑞. 基于P2Mo18 |
[6] | 鲁思, 张鼎晟子, 刘冰, 徐宏, 古宏晨. 高性能量子点编码磁性微球的制备[J]. 高等学校化学学报, 2017, 38(4): 509-516. |
[7] | 尹居鑫, 李祖宏, 牟颖, 吕绍武, 罗贵民. 具有谷胱甘肽过氧化物酶活力的含硒三肽[J]. 高等学校化学学报, 2016, 37(7): 1302-1306. |
[8] | 付茂, 吴德礼, 张亚雷, 张勇. 多羟基结构态亚铁化合物预处理含亚硒酸盐工业废水的影响机制[J]. 高等学校化学学报, 2016, 37(12): 2221-2227. |
[9] | 张晓鹏, 李政伟, 王岩, 牛雪利, 张贵生. 硒催化4-氨基吡啶与硝基芳烃羰基化合成4-吡啶基脲[J]. 高等学校化学学报, 2016, 37(10): 1804-1808. |
[10] | 李晓腾, 王英楠, 林奥雷. 两种不同Pb源对PbSe纳米晶生长的影响[J]. 高等学校化学学报, 2014, 35(9): 1871-1876. |
[11] | 童春义, 唐凤霞, 刘斌, 廖红东, 刘选明. 氟尿嘧啶-壳寡糖/硒纳米微球的制备及抑制肿瘤细胞生长活性[J]. 高等学校化学学报, 2014, 35(7): 1603-1607. |
[12] | 杨年旺, 陈涛, 傅佳骏. 智能纳米容器对缓蚀剂酸/碱双刺激的响应释放性能[J]. 高等学校化学学报, 2014, 35(5): 971-975. |
[13] | 孔韵娜, 李文宇, 杜建委, 汤建国, 胡巧玲, 王幽香. 刺激响应双硒交联聚乙烯亚胺基因微载体[J]. 高等学校化学学报, 2014, 35(4): 881-887. |
[14] | 陶李明, 刘文奇, 周芸, 李爱桃, 刘卉. 碘催化的2-炔基苯胺与二硒醚的亲电环化反应[J]. 高等学校化学学报, 2013, 34(6): 1423-1427. |
[15] | 陈丽娜, 王颖, 朱莹, 孙一新, 王幽香. 刺激响应共负载药物/基因微载体的制备[J]. 高等学校化学学报, 2013, 34(3): 720-725. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||