高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (2): 492.doi: 10.7503/cjcu20200686
史江维,孟楠楠,郭亚梅,于一夫,张兵
收稿日期:
2020-09-14
出版日期:
2021-02-10
发布日期:
2021-02-05
作者简介:
郭亚梅, 博士, 副教授, 主要从事无机合成化学研究. E-mail: 基金资助:
SHI Jiangwei1, MENG Nannan2, GUO Yamei1(), YU Yifu2, ZHANG Bin1(
)
Received:
2020-09-14
Online:
2021-02-10
Published:
2021-02-05
Contact:
ZHANG Bin
E-mail:ymguo@tju.edu.cn;bzhang@tju.edu.cn
Supported by:
摘要:
电催化水分解因其丰富的原料来源和环境友好被认为是一种有前途的制氢技术. 开发用于电催化析氢反应的高效电催化剂是迫切需要的. 随着石墨烯的兴起, 二维(2D)材料因其独特的物理、 化学和电子特性, 已逐渐成为水电解的潜在候选材料. 本文介绍了二维材料用于电化学水分解产生氢气的最新进展, 概括了二维材料的合成方法, 总结了改善二维材料电化学析氢性能的策略, 讨论了该领域面临的挑战和未来的发展机遇.
中图分类号:
TrendMD:
史江维, 孟楠楠, 郭亚梅, 于一夫, 张兵 . 二维材料用于电催化析氢的研究进展. 高等学校化学学报, 2021, 42(2): 492.
SHI Jiangwei, MENG Nannan, GUO Yamei, YU Yifu, ZHANG Bin. Recent Advances of Two-dimensional Materials for Electrocatalytic Hydrogen Evolution. Chem. J. Chinese Universities, 2021, 42(2): 492.
Fig.2 Scheme for the liquid exfoliation of bulk materials into 2D nanosheets by ultrasonic treatment(A)[42] and electrochemical lithium ions intercalation process for the fabrication of 2D nanosheets from the layered bulk materials(B)[46]note:(A) Copyright 2013, American Association for the Advancement of Science; (B) Copyright 2011, Wiley-VCH.
Fig.3 TEM image of CoP nanosheeets(A), the corresponding Tafel plots of CoP ultrathin porous nanosheets(UPNSs), CoP nanoparticles(NPs) and 20% Pt/C in 0.5 mol/L H2SO4 at a scan rate of 2 mV/s(B), mass activity as a function of the overpotential for CoP UPNSs and NPs(C)[54] and scheme for the growth process of RhPd?H(D)[58]note:(A—C) Copyright 2017, Royal Society of Chemistry; (D) Copyright 2020, American Chemical Society.
Fig.4 Schematic diagram for dual temperature zone CVD synthesis of vertical MoS2 nanosheets on glassy carbon(A)[62], the current image of MoS2 nanosheets on highly oriented pyrolytic graphite(HOPG) substrate with 15 μm× 15 μm of scan sizes and 130 V/s of scan rate at -1.3 V vs. RHE sweep voltage(B), overpotential(C) and Tafel slope(D) on the MoS2 edge(red), terrace(green), and HOPG edge(grey) regions[63]note:(A) Copyright 2018, Royal Society of Chemistry; (B—D) Copyright 2020, Wiley-VCH.
Fig.5 Typical TEM image of Au nanosheets on graphene oxide(GO) with a scale bar of 500 nm(A)[65], onset potentials and overpotentials(at the current density of 10.0 mA/cm2) of 4H/fcc Au@PdAg NRBs, Pd black, and Pt black(B) and the corresponding Tafel plots(C)[66], schematic illustration for the growth of 2D TaS2 nanosheets on micron?sized NaCl crystals(D) and schematic illustration of TaS2 for the HER process(E)[67]note:(A) Copyright 2011, Springer Nature; (B, C) Copyright 2016, American Chemical Society;(D, E) Copyright 2019, American Chemical Society.
Fig.6 Scheme of MoSe2 nanofilm with molecular layers perpendicular to a curved surface(A)[72], schematic view illustrating the edges of fractal monolayer MoS2 flakes as active catalytic sites for HER(B), polarization curves of bare Au foil and MoS2/Au foils(a, b and c represent the coverage of 12%, 40%, and 60% for MoS2, respectively)(C)[73] and schematic illustration of the preparation process and microstructure of unsaturated sulfur edge MoS2 nanosheet?carbon macroporous(D)[74]note:(A) Copyright 2013, American Chemical Society;(B,C) Copyright 2014, American Chemical Society;(D) Copyright 2016, Wiley-VCH.
Fig.7 Scheme for the top(upper panel) and side(lower panel) views of MoS2 with strained S?vacancies on the basal plane(A) and free energy vs. the reaction coordinate of HER for the S?vacancy range of 0—25%(B)[75], scheme for mesoporous 1T?MoS2 nanosheets for catalyzing HER(C)[76] and scheme for the preparation of Co3S4 PNSvac(D)[77]note:(A, B) Copyright 2016, Springer Nature; (C) Copyright 2016, American Chemical Society;(D) Copyright 2018, American Chemical Society.
Fig.8 Schematic representation of the disordered structure in oxygen?incorporated MoS2 ultrathin nanosheets(A), constructed model of an individual oxygen?incorporated MoS2 nanodomain and the illustration of the HER process at the active sites(B), polarization curves of the oxygen?incorporated MoS2 ultrathin nanosheets(C)[81], TEM image of Ni?doped nanoporous graphene(G)(D), hydrogen adsorption sites and configuration of the interstitial atoms in the hollow centers of the benzene rings (Nisub))/G model with ΔGH*=-0.10 eV(left) and calculated Gibbs free energy diagram(right) of the HER at equilibrium potential for a Pt catalyst and Ni?doped graphene(substitutional dopants occupying C sites in the graphene lattice(Niab)/G, Nisub/G, and anchoring atoms on defect sites(Nidef)/G) samples(E)[82] and schematic illustration for the synthesis of multi?heteroatoms?doped MoS2(M?MoS2)(F)[83]note:(A, C) Copyright 2013, American Chemical Society; (D, E) Copyright 2015, Wiley-VCH; (F) Copyright 2020, Wiley-VCH.
1 | Chu S., Majumdar A., Nature, 2012, 488(7411), 294—303 |
2 | Ren S., Joulié D., Salvatore D., Torbensen K., Wang M., Robert M., Berlinguette C. P., Science, 2019, 365(6451), 367—369 |
3 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Nørskov J. K., Jaramillo T. F., Science, 2017, 355(6321), eaad4998 |
4 | Zhang B., Xu W., Lu Z., Sun J., Transactions of Tianjin University, 2020, 26(3), 188—196 |
5 | Cao X., Tan C., Sindoro M., Zhang H., Chem. Soc. Rev., 2017, 46(10), 2660—2677 |
6 | Cao X., Tan C., Zhang X., Zhao W., Zhang H., Adv. Mater., 2016, 28(29), 6167—6196 |
7 | Ma A., Chen Y., Liu Y., Gui J., Yu Y., Chem. Res. Chinese Universities, 2020, 36(4), 699—702 |
8 | Wang Y., Yu Y., Jia R., Zhang C., Zhang B., National Science Review, 2019, 6(4), 730—738 |
9 | Yu Y., Shi Y., Zhang B., Accounts of Chemical Research, 2018, 51(7), 1711—1721 |
10 | Jiao Y., Zheng Y., Jaroniec M. T., Qiao S. Z., Chem. Soc. Rev., 2015, 44(8), 2060—2086 |
11 | Lu Q., Yu Y., Ma Q., Chen B., Zhang H., Adv. Mater., 2016, 28(10), 1917—1933 |
12 | Chen Y., Yang K., Jiang B., Li J., Zeng M., Fu L., J. Mater. Chem. A, 2017, 5(18), 8187—8208 |
13 | Shi W., Liu X., Deng T., Huang S., Ding M., Miao X., Zhu C., Zhu Y., Liu W., Wu F., Gao C., Yang S. W., Yang H. Y., Shen J., Cao X., Adv. Mater., 2020, 32(33), 1907404 |
14 | Han S., Yun Q., Tu S., Zhu L., Cao W., Lu Q., J. Mater. Chem. A, 2019, 7(43), 24691—24714 |
15 | Liu W., Yu L., Yin R., Xu X., Feng J., Jiang X., Zheng D., Gao X., Gao X., Que W., Ruan P., Wu F., Shi W., Cao X., Small, 2020, 16(10), 1906775 |
16 | Lu Q., Wang A. L., Cheng H., Gong Y., Yun Q., Yang N., Li B., Chen B., Zhang Q., Zong Y., Gu L., Zhang H., Small, 2018, 14(30), 1801090 |
17 | Faber M. S., Jin S., Energy Environmental Science, 2014, 7(11), 3519—3542 |
18 | Li X., Hao X., Abudula A., Guan G., J. Mater. Chem. A, 2016, 4(31), 11973—12000 |
19 | Liang J., Ma F., Hwang S., Wang X., Sokolowski J., Li Q., Wu G., Su D., Joule, 2019, 3(4), 956—991 |
20 | Xie J., Zhang H., Li S., Wang R., Sun X., Zhou M., Zhou J., Lou X. W., Xie Y., Adv. Mater., 2013, 25(40), 5807—5813 |
21 | Thoi V. S., Sun Y., Long J. R., Chang C. J., Chem. Soc. Rev., 2013, 42(6), 2388—2400 |
22 | Yan Y., He T., Zhao B., Qi K., Liu H., Xia B. Y., J. Mater. Chem. A, 2018, 6(33), 15905—15926 |
23 | Sun R. B., Guo W. X., Han X., Hong X., Chem. Res. Chinese Universities, 2020, 36(4), 597—610 |
24 | Sun Y. F., Gao S., Lei F. C., Xie Y., Chem. Soc. Rev., 2015, 44(3), 623—636 |
25 | Wang H., Yuan H., Sae Hong S., Li Y., Cui Y., Chem. Soc. Rev., 2015, 44(9), 2664—2680 |
26 | Xu M., Liang T., Shi M., Chen H., Chem. Rev., 2013, 113(5), 3766—3798 |
27 | Zhang H., ACS Nano, 2015, 9(10), 9451—9469 |
28 | Li Z., Zhang X., Cheng H., Liu J., Shao M., Wei M., Evans D. G., Zhang H., Duan X., Adv. Energy Mater., 2020, 10(11), 1900486 |
29 | Tao H., Gao Y., Talreja N., Guo F., Texter J., Yan C., Sun Z., J. Mater. Chem. A, 2017, 5(16), 7257—7284 |
30 | Liu W., Yin R., Xu X., Zhang L., Shi W., Cao X., Adv. Sci., 2019, 6(12), 1802373 |
31 | Wu Y., Wang D., Li Y., Science China Materials, 2016, 59, 938—996 |
32 | Tan C., Cao X., Wu X. J., He Q., Yang J., Zhang X., Chen J., Zhao W., Han S., Nam G. H., Sindoro M., Zhang H., Chem. Rev., 2017, 117(9), 6225—6331 |
33 | Pottathara Y. B., Grohens Y., Kokol V., Kalarikkal N., Thomas S., Nanomaterials Synthesis, Elsevier, Amsterdam, 2019 |
34 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666—669 |
35 | Liu F., You L., Seyler K. L., Li X., Yu P., Lin J., Wang X., Zhou J., Wang H., He H., Pantelides S. T., Zhou W., Sharma P., Xu X., Ajayan P. M., Wang J., Liu Z., Nature Commun., 2016, 7(1), 12357 |
36 | Buscema M., Groenendijk D. J., Blanter S. I., Steele G. A., van der Zant H. S. J., Castellanos⁃Gomez A., Nano Lett., 2014, 14(6), 3347—3352 |
37 | Dean C. R., Young A. F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K. L., Hone J., Nature Nanotech., 2010, 5(10), 722—726 |
38 | Yi M., Shen Z., J. Mater. Chem. A, 2015, 3(22), 11700—11715 |
39 | Pan X., Hong X., Xu L., Li Y., Yan M., Mai L., Nano Today, 2019, 28, 100764 |
40 | Wang J., Yan M., Zhao K., Liao X., Wang P., Pan X., Yang W., Mai L., Adv. Mater., 2017, 29(7), 1604464 |
41 | Yan M., Zhou X., Pan X., Wang J., Xia L., Yu K., Liao X., Xu X., He L., Mai L., Nano Research, 2018, 11(6), 3205—3212 |
42 | Nicolosi V., Chhowalla M., Kanatzidis M. G., Strano M. S., Coleman J. N., Science, 2013, 340(6139), 1226419 |
43 | Hernandez Y., Nicolosi V., Lotya M., Blighe F. M., Sun Z., De S., McGovern I. T., Holland B., Byrne M., Gun Ko Y. K., Boland J. J., Niraj P., Duesberg G., Krishnamurthy S., Goodhue R., Hutchison J., Scardaci V., Ferrari A. C., Coleman J. N., Nature Nanotech., 2008, 3(9), 563—568 |
44 | Nguyen T. P., Choi S., Jeon J. M., Kwon K. C., Jang H. W., Kim S. Y., J. Phys. Chem. C, 2016, 120(7), 3929—3935 |
45 | Wang H., Song T., Su X., Li Z., Wang J., ACS Sustainable Chemistry & Engineering, 2020, 8(2), 1262—1267 |
46 | Zeng Z., Yin Z., Huang X., Li H., He Q., Lu G., Boey F., Zhang H., Angew. Chem. Inter. Ed., 2011, 50(47), 11093—11097 |
47 | Zeng Z., Tan C., Huang X., Bao S., Zhang H., Energy & Environmental Science, 2014, 7(2), 797—803 |
48 | Shi W., Song S., Zhang H., Chem. Soc. Rev., 2013, 42(13), 5714—5743 |
49 | Sun Y., Gao S., Lei F., Liu J., Liang L., Xie Y., Chem. Sci., 2014, 5(10), 3976—3982 |
50 | Sun Y., Liu Q., Gao S., Cheng H., Lei F., Sun Z., Jiang Y., Su H., Wei S., Xie Y., Nature Commun., 2013, 4(1), 2899 |
51 | Sun Y., Sun Z., Gao S., Cheng H., Liu Q., Piao J., Yao T., Wu C., Hu S., Wei S., Xie Y., Nature Commun., 2012, 3(1), 1057 |
52 | Zhang X., Zhang J., Zhao J., Pan B., Kong M., Chen J., Xie Y., J. Am. Chem. Soc., 2012, 134(29), 11908—11911 |
53 | Wu F., Gao X., Xu X., Jiang Y., Gao X., Yin R., Shi W., Liu W., Lu G., Cao X., Chemsuschem, 2020, 13(6), 1537—1545 |
54 | Zhang C., Huang Y., Yu Y., Zhang J., Zhuo S., Zhang B., Chem. Sci., 2017, 8(4), 2769—2775 |
55 | Zhang Q., Kuang Y., Li Y., Jiang M., Cai Z., Pang Y., Chang Z., Sun X., J. Mater. Chem. A, 2019, 7(16), 9517—9522 |
56 | Yin Y., Zhang Y., Gao T., Yao T., Zhang X., Han J., Wang X., Zhang Z., Xu P., Zhang P., Cao X., Song B., Jin S., Adv. Mater., 2017, 29(28), 1700311 |
57 | Lu X., Lin Y., Dong H., Dai W., Chen X., Qu X., Zhang X., Scientific Reports, 2017, 7(1), 42309 |
58 | Fan J., Wu J., Cui X., Gu L., Zhang Q., Meng F., Lei B. H., Singh D. J., Zheng W., J. Am. Chem. Soc., 2020, 142(7), 3645—3651 |
59 | Wong S. L., Liu H., Chi D., Progr. Crystal Growth Character. Mater., 2016, 62(3), 9—28 |
60 | Pollard A. J., Nair R. R., Sabki S. N., Staddon C. R., Perdigao L. M. A., Hsu C. H., Garfitt J. M., Gangopadhyay S., Gleeson H. F., Geim A. K., Beton P. H., J. Phys. Chem. C, 2009, 113(38), 16565—16567 |
61 | Jiang S., Zhang Z., Zhang N., Huan Y., Gong Y., Sun M., Shi J., Xie C., Yang P., Fang Q., Li H., Tong L., Xie D., Gu L., Liu P., Zhang Y., Nano Research, 2018, 11(4), 1787—1797 |
62 | He M., Kong F., Yin G., Lv Z., Sun X., Shi H., Gao B., RSC Adv., 2018, 8(26), 14369—14376 |
63 | Takahashi Y., Kobayashi Y., Wang Z., Ito Y., Ota M., Ida H., Kumatani A., Miyazawa K., Fujita T., Shiku H., Korchev Y. E., Miyata Y., Fukuma T., Chen M., Matsue T., Angew. Chem. Inter. Ed., 2020, 59(9), 3601—3608 |
64 | Tan C., Zhang H., Nature Commun., 2015, 6(1), 7873 |
65 | Huang X., Li S., Huang Y., Wu S., Zhou X., Li S., Gan C. L., Boey F., Mirkin C. A., Zhang H., Nature Commun., 2011, 2(1), 292 |
66 | Fan Z., Luo Z., Huang X., Li B., Chen Y., Wang J., Hu Y., Zhang H., J. Am. Chem. Soc., 2016, 138(4), 1414—1419 |
67 | Huan Y., Shi J., Zou X., Gong Y., Xie C., Yang Z., Zhang Z., Gao Y., Shi Y., Li M., Yang P., Jiang S., Hong M., Gu L., Zhang Q., Yan X., Zhang Y., J. Am. Chem. Soc., 2019, 141(47), 18694—18703 |
68 | Yang S., Niu W., Wang A. L., Fan Z., Chen B., Tan C., Lu Q., Zhang H., Angew. Chem. Inter. Ed., 2017, 56(15), 4252—4255 |
69 | Huang C., Huang Y., Liu C., Yu Y., Zhang B., Angew. Chem. Inter. Ed., 2019, 58(35), 12014—12017 |
70 | Wang Z., Xu L., Huang F., Qu L., Li J., Owusu K. A., Liu Z., Lin Z., Xiang B., Liu X., Zhao K., Liao X., Yang W., Cheng Y. B., Mai L., Adv. Energy Mater., 2019, 9(21), 1900390 |
71 | Kong D., Wang H., Cha J. J., Pasta M., Koski K. J., Yao J., Cui Y. J. N. l., Nano Lett., 2013, 13(3), 1341—1347 |
72 | Wang H., Kong D., Johanes P., Cha J. J., Zheng G., Yan K., Liu N., Cui Y., Nano Lett., 2013, 13(7), 3426—3433 |
73 | Zhang Y., Ji Q., Han G., Ju J., Shi J., Ma D., Sun J., Zhang Y., Li M., Lang X. Y., Zhang Y., Liu Z., ACS Nano,2014, 8(8), 8617—8624 |
74 | Xu Q., Liu Y., Jiang H., Hu Y., Liu H., Li C., Adv. Energy Mater., 2019, 9(2), 1802553 |
75 | Li H., Tsai C., Koh A. L., Cai L., Contryman A. W., Fragapane A. H., Zhao J., Han H. S., Manoharan H. C., Abild⁃Pedersen F., Nørskov J. K., Zheng X., Nature Mater., 2016, 15(1), 48—53 |
76 | Yin Y., Han J., Zhang Y., Zhang X., Xu P., Yuan Q., Samad L., Wang X., Wang Y., Zhang Z., Zhang P., Cao X., Song B., Jin S., J. Am. Chem. Soc., 2016, 138(25), 7965—7972 |
77 | Zhang C., Shi Y., Yu Y., Du Y., Zhang B., ACS Catalysis, 2018, 8(9), 8077—8083 |
78 | Zhao Y., Tang M. T., Wu S., Geng J., Han Z., Chan K., Gao P., Li H., J. Catalysis, 2020, 382, 320—328 |
79 | Zheng Y., Jiao Y., Li L. H., Xing T., Chen Y., Jaroniec M., Qiao S. Z., ACS Nano, 2014, 8(5), 5290—5296 |
80 | Jiang H., Zhu Y., Su Y., Yao Y., Liu Y., Yang X., Li C., J. Mater. Chem. A, 2015, 3(24), 12642—12645 |
81 | Xie J., Zhang J., Li S., Grote F., Zhang X., Zhang H., Wang R., Lei Y., Pan B., Xie Y., J. Am. Chem. Soc., 2013, 135(47), 17881—17888 |
82 | Qiu H. J., Ito Y., Cong W., Tan Y., Liu P., Hirata A., Fujita T., Tang Z., Chen M., Angew. Chem. Intern. Ed., 2015, 54(47), 14031—14035 |
83 | Yang W., Zhang S., Chen Q., Zhang C., Wei Y., Jiang H., Lin Y., Zhao M., He Q., Wang X., Du Y., Song L., Yang S., Nie A., Zou X., Gong Y., Adv. Mater., 2020, 32(30), 2001167 |
[1] | 林高鑫, 王家成. 单原子掺杂二硫化钼析氢催化的进展和展望[J]. 高等学校化学学报, 2022, 43(9): 20220321. |
[2] | 汪思聪, 庞贝贝, 刘潇康, 丁韬, 姚涛. XAFS技术在单原子电催化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220487. |
[3] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[4] | 姚青, 俞志勇, 黄小青. 单原子催化剂的合成及其能源电催化应用的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220323. |
[5] | 范建玲, 唐灏, 秦凤娟, 许文静, 谷鸿飞, 裴加景, 陈文星. 氮掺杂超薄碳纳米片复合铂钌单原子合金催化剂的电化学析氢性能[J]. 高等学校化学学报, 2022, 43(9): 20220366. |
[6] | 韩付超, 李福进, 陈良, 贺磊义, 姜玉南, 徐守冬, 张鼎, 其鲁. CoSe2/C复合电催化材料修饰隔膜对高载量锂硫电池性能的影响[J]. 高等学校化学学报, 2022, 43(8): 20220163. |
[7] | 王茹涵, 贾顺涵, 吴丽敏, 孙晓甫, 韩布兴. CO2参与电化学构筑C—N键制备重要化学品[J]. 高等学校化学学报, 2022, 43(7): 20220395. |
[8] | 彭奎霖, 李桂林, 江重阳, 曾少娟, 张香平. 电解液调控CO2电催化还原性能微观机制的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220238. |
[9] | 王丽君, 李欣, 洪崧, 詹新雨, 王迪, 郝磊端, 孙振宇. 调节氧化镉-炭黑界面高效电催化CO2还原生成CO[J]. 高等学校化学学报, 2022, 43(7): 20220317. |
[10] | 赵润瑶, 纪桂鹏, 刘志敏. 吡咯氮配位单原子铜催化剂的电催化二氧化碳还原性能[J]. 高等学校化学学报, 2022, 43(7): 20220272. |
[11] | 龚妍熹, 王建兵, 柴歩瑜, 韩元春, 马云飞, 贾超敏. 钾掺杂g-C3N4薄膜光阳极的制备及光电催化氧化降解水中双氯芬酸钠性能[J]. 高等学校化学学报, 2022, 43(6): 20220005. |
[12] | 杨丽君, 于洋, 张蕾. 双功能2D/3D杂化结构Co2P-CeO x 异质结一体化电极的构筑及电催化尿素氧化辅助制氢性能[J]. 高等学校化学学报, 2022, 43(6): 20220082. |
[13] | 张义超, 赵付来, 王宇, 王亚玲, 沈永涛, 冯奕钰, 封伟. 基于多层二硒化钨的高性能场效应晶体管的实验优化和理论模拟[J]. 高等学校化学学报, 2022, 43(6): 20220113. |
[14] | 夏天, 万家炜, 于然波. 异原子配位结构碳基单原子电催化剂结构与性能相关性的研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220162. |
[15] | 黄汉浩, 卢湫阳, 孙明子, 黄勃龙. 石墨炔原子催化剂的崭新道路:基于自验证机器学习方法的筛选策略[J]. 高等学校化学学报, 2022, 43(5): 20220042. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||