高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (7): 1449-1460.doi: 10.7503/cjcu20200212
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2020-04-20
出版日期:
2020-07-10
发布日期:
2020-06-16
通讯作者:
段昊泓
E-mail:hhduan@mail.tsinghua.edu.cn
基金资助:
ZHOU Hua1,LI Zhenhua2,KONG Xianggui2,DUAN Haohong1,*()
Received:
2020-04-20
Online:
2020-07-10
Published:
2020-06-16
Contact:
Haohong DUAN
E-mail:hhduan@mail.tsinghua.edu.cn
Supported by:
摘要:
生物质是一类丰富的可再生碳基资源, 有望代替传统化石资源生产燃料和化学品, 受到了广泛关注和研究. 近年来, 电催化作为一种绿色高效的转化策略, 成为生物质催化转化的重要研究方向之一, 具有巨大的应用前景. 本文总结了生物质平台化合物电催化制备高附加值燃料与化学品的研究进展, 根据反应类型重点介绍了电催化氧化、 还原和偶联反应, 对催化反应过程和机理进行了阐述, 并对电催化生物炼制的前景进行了展望.
中图分类号:
周华, 栗振华, 孔祥贵, 段昊泓. 生物质平台化合物电催化制备高值燃料与化学品研究进展[J]. 高等学校化学学报, 2020, 41(7): 1449-1460.
ZHOU Hua, LI Zhenhua, KONG Xianggui, DUAN Haohong. Recent Progress in Electrochemical Catalytic Conversion of Biomass Platform Molecules into High-value Added Fuels and Chemicals†[J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1449-1460.
Catalyst | Anode | Cathode | Cell voltage | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Substrate | Product | FE(%) | Reaction | FE(%) | V1/V | V2/V | ||
Pd/TNTA-web | Ethanol | Acetate | | HER | | 1.76 | 0.69 | [ |
Ni3S2/NF | HMF | FDCA | 98 | HER | 100 | 1.58 | 1.46 | [ |
Ni2P NPA/NF | HMF | FDCA | 98 | HER | 100 | 1.65 | 1.44 | [ |
Ni-Mo-N/CFC | Glycerol | Formate | 95 | HER | 99.7 | 1.62 | 1.36 | [ |
Nifeox(+)/Nifenx(-) | Glucose | Glucaric acid | 87 | HER | | 1.66 | 1.39 | [ |
Graphite-felt(+)/Pt/C(-) | Raw biomass | Cox+Oxidation products | | HER | | | | [ |
BNC | HMF | FDCA | | N2RR | 15.2 | | | [ |
Pt black(+)/Ag(-) | Glycerol | Formate+Lactate | | CO2RR | | 1.60 | 0.75 | [ |
Table 1 Results of replacing OER with alcohols/aldehyde oxidation for enhancing cathodic reactions*
Catalyst | Anode | Cathode | Cell voltage | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Substrate | Product | FE(%) | Reaction | FE(%) | V1/V | V2/V | ||
Pd/TNTA-web | Ethanol | Acetate | | HER | | 1.76 | 0.69 | [ |
Ni3S2/NF | HMF | FDCA | 98 | HER | 100 | 1.58 | 1.46 | [ |
Ni2P NPA/NF | HMF | FDCA | 98 | HER | 100 | 1.65 | 1.44 | [ |
Ni-Mo-N/CFC | Glycerol | Formate | 95 | HER | 99.7 | 1.62 | 1.36 | [ |
Nifeox(+)/Nifenx(-) | Glucose | Glucaric acid | 87 | HER | | 1.66 | 1.39 | [ |
Graphite-felt(+)/Pt/C(-) | Raw biomass | Cox+Oxidation products | | HER | | | | [ |
BNC | HMF | FDCA | | N2RR | 15.2 | | | [ |
Pt black(+)/Ag(-) | Glycerol | Formate+Lactate | | CO2RR | | 1.60 | 0.75 | [ |
Scheme 4 Electrochemical oxidation of glycerol (A) Possible reaction routes for electrooxidation of glycerol; (B) representative electrochemical catalysts and its products for electrooxidation of glycerol.
Scheme 6 Electrochemical hydrogenation (A) Possible rection routes for hydrogenation of ketones/aldehydes[64]. Copyright 2017, American Chemical Society. (B) Hydrogenation of CC[71]. Copyright 2016, Wiley-VCH. (C) Hydrogenation of rings[60]. Copyright 2019, Wiley-VCH.
Scheme 7 Electrochemical hydrogenolysis (A) Hydrodeoxygenation(HDO) of aldehydes/ketones/alcoholes. (B) Hydrogenolysis of ethers[74]. Copyright 2020, American Chemical Society.
Scheme 8 Anodic kolbe electrolysis for C-C coupling reactions (A) Reaction mechanism of kolbe reaction; (B) conversion of levulinic acid to octane via hydrodeoxygenation and kolbe reaction.
Scheme 9 Electrochemical reductive C-C coupling reactions (A) Reaction mechanism of cathodic dimerization of aldehydes; (B) reductive C-C coupling of HMF or furfural.
[1] |
Tuck C. O., Perez E., Horvath I. T., Sheldon R. A., Poliakoff M., Science, 2012, 337(6095), 695—699
doi: 10.1126/science.1218930 URL |
[2] |
Luterbacher J. S., Rand J. M., Alonso D. M., Han J., Youngquist J. T., Maravelias C. T., Pfleger B. F., Dumesic J. A., Science, 2014, 343(6168), 277—280
URL pmid: 24436415 |
[3] | Kong L. Z., Miao G., Luo H., Sun Y. H., Chem. J. Chinese Universities, 2020, 41(1), 11—18 |
( 孔令照, 苗改, 罗虎, 孙予罕. 高等学校化学学报, 2020, 41(1), 11—18) | |
[4] |
Ragauskas A. J., Beckham G. T., Biddy M. J., Chandra R., Chen F., Davis M. F., Davison B. H., Dixon R. A., Gilna P., Keller M., Langan P., Naskar A. K., Saddler J. N., Tschaplinski T. J., Tuskan G. A., Wyman C. E., Science, 2014, 344(6185), 1246843
URL pmid: 24833396 |
[5] |
Alonso D. M., Hakim S. H., Zhou S., Won W., Hosseinaei O., Tao J., Garcia—Negron V., Motagamwala A. H., Mellmer M. A., Huang K., Houtman C. J., Labbe N., Harper D. P., Maravelias C., Runge T., Dumesic J. A., Sci. Adv., 2017, 3(5), e1603301
URL pmid: 28560350 |
[6] |
Liao Y., Koelewijn S. F., van den Bossche G., van Aelst J., van den Bosch S., Renders T., Navare K., Nicolaï T., van Aelst K., Maesen M., Matsushima H., Thevelein J., van Acker K., Lagrain B., Verboekend D., Sels B. F., Science, 2020, 367(6484), 1385—1390
URL pmid: 32054697 |
[7] | Mellmer M. A., Martin Alonso D., Luterbacher J. S., Gallo J. M. R., Dumesic J. A., Green Chem., 2014, 16(11), 4659—4662 |
[8] |
Motagamwala A. H., Won W. Y., Sener C., Alonso D. M., Maravelias C. T., Dumesic J. A., Sci. Adv., 2018, 4(1), eaap9722
URL pmid: 29372184 |
[9] | Gurbuz E. I., Gallo J. M., Alonso D. M., Wettstein S. G., Lim W. Y., Dumesic J. A., Angew. Chem. Int. Ed., 2013, 52(4), 1270—1274 |
[10] |
Mellmer M. A., Sener C., Gallo J. M. R., Luterbacher J. S., Alonso D. M., Dumesic J. A., Angew. Chem. Int. Ed., 2014, 53(44), 11872—11875
doi: 10.1002/anie.201408359 URL |
[11] | Motagamwala A. H., Huang K., Maravelias C. T., Dumesic J., Energy Environ. Sci., 2019, 12(7), 2212—2222 |
[12] | Alonso D. M., Wettstein S. G., Mellmer M. A., Gurbuz E. I., Dumesic J. A., Energy Environ. Sci., 2013, 6(1), 76—80 |
[13] | Renders T van den Bosch S., Koelewijn S. F., Schutyser W., Sel B. F., Energy Environ. Sci., 2017, 10(7), 1551—1557 |
[14] | Anderson E. M., Stone M. L., Katahira R., Reed M., Beckham G. T., Román-Leshkov Y., Joule, 2017, 1(3), 613—622 |
[15] |
Van den Bosch S Schutyser W., Vanholme R., Driessen T., Koelewijn S. F., Renders T., de Meester B., Huijgen W. J. J., Dehaen W., Courtin C. M., Lagrain B., Boerjan W., Sels B. F., Energy Environ. Sci., 2015, 8(6), 1748—1763
doi: 10.1039/C5EE00204D URL |
[16] |
Zhang Z., Huber G. W., Chem. Soc. Rev., 2018, 47(4), 1351—1390
doi: 10.1039/c7cs00213k URL pmid: 29297525 |
[17] |
Qin Q., Heil T., Schmidt J., Schmallegger M., Gescheidt G., Antonietti M., Oschatz M., ACS Appl. Energy Mater., 2019, 2(11), 8359—8365
doi: 10.1021/acsaem.9b01852 URL |
[18] | Liu W., Dang L., Xu Z., Yu H. Q., Jin S., Huber G. W., ACS Catal., 2018, 8(6), 5533—5541 |
[19] |
Cha H. G., Choi K. S., Nat. Chem., 2015, 7(4), 328—333
URL pmid: 25803471 |
[20] |
Chen Y. X., Lavacchi A., Miller H. A., Bevilacqua M., Filippi J., Innocenti M., Marchionni A., Oberhauser W., Wang L., Vizza F., Nat. Commun., 2014, 5, 4036
URL pmid: 24892771 |
[21] | Verma S., Lu S., Kenis P. J. A., Nat. Energy, 2019, 4(6), 466—474 |
[22] |
You B., Liu X., Jiang N., Sun Y., J. Am. Chem. Soc., 2016, 138(41), 13639—13646
URL pmid: 27652996 |
[23] | You B., Jiang N., Liu X., Sun Y., Angew. Chem. Int. Ed., 2016, 55(34), 9913—9917 |
[24] |
Li Y., Wei X., Chen L., Shi J., He M., Nat. Commun., 2019, 10(1), 5335
URL pmid: 31767871 |
[25] |
Liu W. J., Xu Z., Zhao D., Pan X. Q., Li H. C., Hu X., Fan Z. Y., Wang W. K., Zhao G. H., Jin S., Huber G. W., Yu H. Q., Nat. Commun., 2020, 11(1), 265
doi: 10.1038/s41467-019-14157-3 URL pmid: 31937783 |
[26] | Liu W., Cui Y., Du X., Zhang Z., Chao Z., Deng Y., Energy Environ. Sci., 2016, 9(2), 467—472 |
[27] |
Carneiro J., Nikolla E., Annu. Rev. Chem. Biomol. Eng., 2019, 10, 85—104
URL pmid: 31173521 |
[28] |
Zope B. N., Hibbitts D. D., Neurock M., Davis R. J., Science, 2010, 330(6000), 74—78
URL pmid: 20929807 |
[29] |
Davis S. E., Zope B. N., Davis R. J., Green Chem., 2012, 14(1), 143—147
doi: 10.1039/c1gc16074e URL |
[30] | Zhou H., Hong S., Zhang H., Chen Y. T., Xu H. H., Wang X. K., Jiang Z., Chen S. L., Liu Y., Appl. Catal. B-Environ., 2019, 256, 117767 |
[31] | Zhou H., Xu H., Liu Y., Appl. Catal. B-Environ., 2019, 244, 965—973 |
[32] | Yang G., Jiao Y., Yan H., Xie Y., Wu A., Dong X., Guo D., Tian C., Fu H., Adv. Mater., 2020, e2000455 |
[33] | Wang S., Zhang N., Tao L. I., Chen W. E. I., Zhou L., Liu Z., Zhou B. O., Huang G. E. N., Zou Y., Lin H., Angew. Chem. Int. Ed., 2019, 58(44), 15895—15903 |
[34] | Li W., Jiang N., Hu B., Liu X., Song F., Han G., Jordan T. J., Hanson T. B., Liu T. L., Sun Y., Chem, 2018, 4(3), 637—649 |
[35] | Nam D. H., Taitt B. J., Choi K. S., ACS Catal., 2018, 8(2), 1197—1206 |
[36] | Huang X., Song J., Hua M., Xie Z., Liu S., Wu T., Yang G., Han B., Green Chem., 2020, 22(3), 843—849 |
[37] |
Jiang N., You B., Boonstra R., Terrero Rodriguez I. M., Sun Y., ACS Energy Lett., 2016, 1(2), 386—390
doi: 10.1021/acsenergylett.6b00214 URL |
[38] | Zhang P., Sheng X., Chen X., Fang Z., Jiang J., Wang M., Li F., Fan L., Ren Y., Zhang B., Timmer B. J. J., Ahlquist M. S. G., Sun L., Angew. Chem. Int. Ed., 2019, 58(27), 9155—9159 |
[39] |
Barwe S., Weidner J., Cychy S., Morales D. M., Dieckhofer S., Hiltrop D., Masa J., Muhler M., Schuhmann W., Angew. Chem. Int. Ed., 2018, 57(35), 11460—11464
doi: 10.1002/anie.201806298 URL |
[40] |
Chung D. Y., Lopes P. P., Farinazzo Bergamo Dias Martins P., He H., Kawaguchi T., Zapol P., You H., Tripkovic D., Strmcnik D., Zhu Y., Seifert S., Lee S., Stamenkovic V. R., Markovic N. M., Nat. Energy, 2020, 5(3), 222—230
doi: 10.1038/s41560-020-0576-y URL |
[41] |
Fabbri E., Nachtegaal M., Binninger T., Cheng X., Kim B. J., Durst J., Bozza F., Graule T., Schaublin R., Wiles L., Pertoso M., Danilovic N., Ayers K. E., Schmidt T. J., Nat. Mater., 2017, 16(9), 925—931
doi: 10.1038/nmat4938 URL pmid: 28714982 |
[42] | Huang Y., Chong X., Liu C., Liang Y., Zhang B., Angew. Chem. Int. Ed., 2018, 57(40), 13163—13166 |
[43] | Huang C., Huang Y., Liu C., Yu Y., Zhang B., Angew. Chem. Int. Ed., 2019, 58(35), 12014—12017 |
[44] |
Miao J., Teng X., Zhang R., Guo P., Chen Y., Zhou X., Wang H., Sun X., Zhang L., Appl. Catal. B-Environ., 2020, 263, 118109
doi: 10.1016/j.apcatb.2019.118109 URL |
[45] | Chen J., Zheng H., Kang J., Yang F., Cao Y., Xiang M., RSC Adv., 2017, 7(5), 3035—3042 |
[46] | Cui J., Li Z., Liu K., Li J., Shao M., Nanoscale Adv., 2019, 1(3), 948—952 |
[47] | De Souza M. B. C., Yukuhiro V. Y., Vicente R. A., Vilela Menegaz Teixeira Pires C., Eacute O. T., Aacute S. G., Bott-Neto J. L., Fernandez P. S., ACS Catal., 2020, 10(3), 2131—2137 |
[48] |
Rafiee M., Alherech M., Karlen S. D., Stahl S. S., J. Am. Chem. Soc., 2019, 141(38), 15266—15276
doi: 10.1021/jacs.9b07243 URL pmid: 31483640 |
[49] |
Fu N., Sauer G. S., Saha A., Loo A., Lin S., Science, 2017, 357(6351), 575—579
doi: 10.1126/science.aan6206 URL pmid: 28798126 |
[50] | Valentini F., Kozell V., Petrucci C., Marrocchi A., Gu Y., Gelman D., Vaccaro L., Energy Environ. Sci., 2019, 12(9), 2646—2664 |
[51] |
Xiong Y., Dong J., Huang Z. Q., Xin P., Chen W., Wang Y., Li Z., Jin Z., Xing W., Zhuang Z., Ye J., Wei X., Cao R., Gu L., Sun S., Zhuang L., Chen X., Yang H., Chen C., Peng Q., Chang C. R., Wang D., Li Y., Nat. Nanotechnol., 2020, 15(5), 390—397
doi: 10.1038/s41565-020-0665-x URL pmid: 32231268 |
[52] |
Li Z., Xu Q., Acc. Chem. Res 2017, 50(6), 1449—1458
doi: 10.1021/acs.accounts.7b00132 URL pmid: 28525274 |
[53] | Muiuane V. P., Ferreira M., Bignet P., Bettencourt A. P., Parpot P., J. Environ. Chem. Eng., 2013, 1(4), 1237—1244 |
[54] |
Schaub T., Science, 2019, 366(6472), 1447
URL pmid: 31857467 |
[55] |
Yang J., Liu J., Neumann H., Franke R., Jackstell R., Beller M., Science, 2019, 366(6472), 1514—1517
doi: 10.1126/science.aaz1293 URL pmid: 31857484 |
[56] | Katahira R., Mittal A., McKinney K., Chen X., Tucker M. P., Johnson D. K., Beckham G. T., ACS Sustain. Chem. Eng., 2016, 4(3), 1474—1486 |
[57] |
Huang X., Ludenhoff J. M., Dirks M., Ouyang X., Boot M. D., Hensen E. J. M., ACS Catal., 2018, 8(12), 11184—11190
URL pmid: 30775063 |
[58] | Liao Y., Zhong R., Makshina E., d’Halluin M., van Limbergen Y., Verboekend D., Sels B. F., ACS Catal., 2018, 8(9), 7861—7878 |
[59] |
Ouyang X., Huang X., Boot M. D., Hensen E. J. M., ChemSusChem, 2020, 13(7), 1705—1709
URL pmid: 32092790 |
[60] |
Zhou Y. L., Gao Y. J., Zhong X., Jiang W. B., Liang Y. L., Niu P. F., Li M. C., Zhuang G. L., Li X. N., Wang J. G., Adv. Funct. Mater., 2019, 29(10), 1807651
doi: 10.1002/adfm.v29.10 URL |
[61] |
Meng Q., Hou M., Liu H., Song J., Han B., Nat. Commun 2017, 8, 14190
URL pmid: 28139709 |
[62] |
Liu H., Jiang T., Han B., Liang S., Zhou Y., Science, 2009, 326(5957), 1250—1252
URL pmid: 19965472 |
[63] | Lyalin B. V., Petrosyan V. A., Russ. Chem. Bull., 2004, 53, 688—692 |
[64] |
Chadderdon X. H., Chadderdon D. J., Matthiesen J. E., Qiu Y., Carraher J. M., Tessonnier J. P., Li W., J. Am. Chem. Soc., 2017, 139(40), 14120—14128
doi: 10.1021/jacs.7b06331 URL |
[65] |
Bondue C. J., Calle-Vallejo F., Figueiredo M. C., Koper M. T. M., Nat. Catal., 2019, 2(3), 243—250
doi: 10.1038/s41929-019-0229-3 URL |
[66] |
Bondue C. J., Koper M. T. M., J. Am. Chem. Soc., 2019, 141(30), 12071—12078
doi: 10.1021/jacs.9b05397 URL pmid: 31274297 |
[67] |
Huang X., Zhang L., Li C., Tan L., Wei Z., ACS Catal 2019, 9(12), 11307—11316
doi: 10.1021/acscatal.9b03500 URL |
[68] |
Jung S., Biddinger E. J., ACS Sustain. Chem. Eng., 2016, 4(12), 6500—6508
doi: 10.1021/acssuschemeng.6b01314 URL |
[69] |
Koh K., Sanyal U., Lee M. S., Cheng G., Song M., Glezakou V. A., Liu Y., Li D., Rousseau R., Gutierrez O. Y., Karkamkar A., Derewinski M., Lercher J. A., Angew. Chem. Int. Ed., 2020, 59(4), 1501—1505
doi: 10.1002/anie.v59.4 URL |
[70] |
Matthiesen J. E., Carraher J. M., Vasiliu M., Dixon D. A., Tessonnier J. P., ACS Sustain. Chem. Eng., 2016, 4(6), 3575—3585
doi: 10.1021/acssuschemeng.6b00679 URL |
[71] |
Suastegui M., Matthiesen J. E., Carraher J. M., Hernandez N., Rodriguez Quiroz N., Okerlund A., Cochran E. W., Shao Z., Tessonnier J. P., Angew. Chem. Int. Ed., 2016, 55(7), 2368—2373
doi: 10.1002/anie.201509653 URL |
[72] |
Vardon D. R., Franden M. A., Johnson C. W., Karp E. M., Guarnieri M. T., Linger J. G., Salm M. J., Strathmann T. J., Beckham G. T., Energy Environ. Sci., 2015, 8(2), 617—628
doi: 10.1039/C4EE03230F URL |
[73] |
Lam C. H., Lowe C. B., Li Z., Longe K. N., Rayburn J. T., Caldwell M. A., Houdek C. E., Maguire J. B., Saffron C. M., Miller D. J., Jackson J. E., Green Chem., 2015, 17(1), 601—609
doi: 10.1039/C4GC01632G URL |
[74] |
Zhou Y., Klinger G. E., Hegg E. L., Saffron C. M., Jackson J. E., J. Am. Chem. Soc., 2020, 142(8), 4037—4050
doi: 10.1021/jacs.0c00199 URL pmid: 32017546 |
[75] |
Nilges P dos Santos T. R., Harnisch F., Schröder U., Energy Environ. Sci., 2012, 5(1), 5231—5235
doi: 10.1039/C1EE02685B URL |
[76] |
Liu S., Josephson T. R., Athaley A., Chen Q. P., Norton A., Ierapetritou M., Siepmann J. I., Saha B., Vlachos D. G., Sci. Adv., 2019, 5(2), eaav5487
doi: 10.1126/sciadv.aav5487 URL pmid: 30746491 |
[77] |
Fukushima T., Yamauchi M., Chem. Commun., 2019, 55(98), 14721—14724
doi: 10.1039/C9CC07208J URL |
[78] |
Galkin K. I., Krivodaeva E. A., Romashov L. V., Zalesskiy S. S., Kachala V. V., Burykina J. V., Ananikov V. P., Angew. Chem. Int. Ed., 2016, 55(29), 8338—8342
doi: 10.1002/anie.201602883 URL |
[79] |
Leech M. C., Lam K., Acc. Chem. Res., 2020, 53(1), 121—134
doi: 10.1021/acs.accounts.9b00586 URL pmid: 31895535 |
[80] |
Chadderdon X. H., Chadderdon D. J., Pfennig T., Shanks B. H., Li W., Green Chem., 2019, 21(22), 6210—6219
doi: 10.1039/C9GC02264C URL |
[81] |
Jagadeesh R. V., Murugesan K., Alshammari A. S., Neumann H., Pohl M. M., Radnik J., Beller M., Science, 2017, 358(6361), 326—332
doi: 10.1126/science.aan6245 URL pmid: 28935769 |
[82] |
Jouny M., Lv J. J., Cheng T., Ko B. H., Zhu J. J., Goddard W. A., Jiao F., Nat. Chem., 2019, 11(9), 846—851
doi: 10.1038/s41557-019-0312-z URL pmid: 31444485 |
[83] |
Elangovan S., Afanasenko A., Haupenthal J., Sun Z., Liu Y., Hirsch A. K. H., Barta K., ACS Cent. Sci., 2019, 5(10), 1707—1716
doi: 10.1021/acscentsci.9b00781 URL pmid: 31660439 |
[84] |
Liang G., Wang A., Li L., Xu G., Yan N., Zhang T., Chem. Int. Ed., 2017, 56(11), 3050—3054
doi: 10.1002/anie.201610964 URL |
[1] | 常建红, 徐国杰, 李辉, 方千荣. 基于醌基的共价有机框架用于电催化析氧反应[J]. 高等学校化学学报, 2020, 41(7): 1609-1614. |
[2] | 赵国庆, 袁钊, 王连, 郭卓. 磷化镍/氮硫双掺杂石墨烯复合材料的制备及电催化析氢性能[J]. 高等学校化学学报, 2020, 41(7): 1575-1581. |
[3] | 王晓宇, 晏国全, 周新文, 杨芃原. 化学裂解结合生物质谱对多肽二硫键的定位[J]. 高等学校化学学报, 2020, 41(7): 1505-1512. |
[4] | 毛庆,赵健,刘松,郭唱,李冰玉,徐可一,曹自强,黄延强. Ni单原子催化剂表面CO2电还原动力学的电化学谱学解析[J]. 高等学校化学学报, 2020, 41(5): 1058-1067. |
[5] | 叶晓栋, 齐国栋, 徐君, 邓风. Au负载SBA-15分子筛上葡萄糖氧化反应[J]. 高等学校化学学报, 2020, 41(5): 960-966. |
[6] | 卓孟宁,李飞,蒋浩,陈倩文,李鹏,王立章. SnO2/GDE阴极的制备及电催化还原CO2产甲酸性能[J]. 高等学校化学学报, 2020, 41(3): 530-537. |
[7] | 韩志英,李佑稷,陈飞台,汤森培,王鹏. 同轴静电纺丝法制备ZnO/Ag2O纳米纤维材料及其光电催化性能研究[J]. 高等学校化学学报, 2020, 41(2): 308-316. |
[8] | 任向荣,周琦. 纳米多孔Ni和NiO的制备及电催化析氧性能[J]. 高等学校化学学报, 2020, 41(1): 162-174. |
[9] | 章凌,段宏昌,谭争国,吴勤明,孟祥举,肖丰收. 用于柴油车尾气消除反应(NH3-SCR)的八元环沸石分子筛研究进展[J]. 高等学校化学学报, 2020, 41(1): 19-27. |
[10] | 孔令照,苗改,罗虎,孙予罕. 生物质水热催化制备重要含氧化学品研究进展[J]. 高等学校化学学报, 2020, 41(1): 11-18. |
[11] | 杨小天,耿智彬,况思良,冯守华. 电喷雾离子化技术制备FeNi(OH)x薄膜及电催化水氧化性能[J]. 高等学校化学学报, 2020, 41(1): 56-61. |
[12] | 刘芬, 周敏, 王苏霞, 王荣, 杨宁, 马永钧. 用化学需氧量指数法研究亚甲基蓝的可见光光电催化脱色反应机理[J]. 高等学校化学学报, 2019, 40(9): 1988-1997. |
[13] | 李向南, 王秋娴, 范涌, 于明明, 张会双, 杨书廷. 沉积法合成生物质碳磷锂离子负极材料及其高低温电化学性能[J]. 高等学校化学学报, 2019, 40(9): 1949-1954. |
[14] | 周琦, 李志洋, 汪帆. Mo对脱合金制备的Ni-Mo电极骨架结构与析氢性能的影响[J]. 高等学校化学学报, 2019, 40(8): 1717-1725. |
[15] | 邹晓川, 王跃, 王存, 胡世文, 石开云. 胺基功能化ZPS-PVPA固载手性MnⅢ(salen)的合成及不对称催化烯烃环氧化[J]. 高等学校化学学报, 2019, 40(7): 1488-1494. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||