高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (4): 591-603.doi: 10.7503/cjcu20190651
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
韩方杰1,2,代梦娇1,2,梁芷珊3,宋忠乾1,韩冬雪1,2,3,*(),牛利1,2,3
收稿日期:
2019-12-11
出版日期:
2020-04-10
发布日期:
2020-02-07
通讯作者:
韩冬雪
E-mail:dxhan@gzhu.edu.cn
基金资助:
HAN Fangjie1,2,DAI Mengjiao1,2,LIANG Zhishan3,SONG Zhongqian1,HAN Dongxue1,2,3,*(),NIU Li1,2,3
Received:
2019-12-11
Online:
2020-04-10
Published:
2020-02-07
Contact:
Dongxue HAN
E-mail:dxhan@gzhu.edu.cn
Supported by:
摘要:
在新陈代谢过程中, 机体会产生大量以自由基为主要形式的氧化活性物质, 而抗氧化剂可以通过电子转移的方式捕获并中和自由基, 从而有效抵御自由基引起的细胞损害, 以保障和维护人体健康. 食品作为人体外源性抗氧化剂的重要来源可以有效补充因体内代谢及体液排出而损失的抗氧化物质, 因此对食品中抗氧化物质消除自由基的能力即抗氧化能力的测定和评价具有重要意义. 光电化学技术作为一种简单快捷、 低成本、 低背景且高灵敏度的测定方法, 能够有效克服光学法、 色谱法和电化学法等传统测试手段在抗氧化容量分析中的不足. 本文综述了基于半导体及其复合材料的光电化学传感平台的构建及食品体系抗氧化容量分析的研究进展, 评论了多种检测体系的特点并对其研究前景进行了展望.
中图分类号:
韩方杰, 代梦娇, 梁芷珊, 宋忠乾, 韩冬雪, 牛利. 光电化学技术应用于抗氧化分析的研究进展[J]. 高等学校化学学报, 2020, 41(4): 591-603.
HAN Fangjie, DAI Mengjiao, LIANG Zhishan, SONG Zhongqian, HAN Dongxue, NIU Li. Research Progress of Photoelectrochemical Technology Applied in Antioxidant Analysis †[J]. Chemical Journal of Chinese Universities, 2020, 41(4): 591-603.
Fig.3 Photocurrent responses of the g-C3N4/ITO electrode to different concentrations of AA(A) and corresponding calibration curve(B) in 0.1 mol/L PBS(pH=7.4)[62](A) c(AA)/(μmol·L-1): a. 0; b. 0.25; c. 0.5; d. 1; e. 3; f. 5; g. 10; h. 15; i. 25; j. 35; k. 55; l. 75; m. 100; n. 125; o. 175; p. 225; q. 325; r. 425; s. 525; t. 775; u. 1275. Inset of (B) shows better illustration of linear part in calibration curve. Error bars correspond to the standard deviations from three independent measurements with RSD equal to 5.2%.Copyright 2018, Elsevier.
Fig.4 Photocurrent responses of TiO2(a0, a1), rGO-TiO2(b0, b1) and PANI-rGO-TiO2(c0, c1) modified ITO without(a0—c0) and with(a1—c1) 166.8 mmol/L GA(A); photocurrent responses of PANI-rGO-TiO2 modified ITO with different concentrations of GA(B); photocurrent response of a PANI-rGO-TiO2 modified ITO electrode upon the addition of 166.8 mmol/L each of AA, GA, 33.36 mmol/L each of GSH, CYs, L-citric acid, L-malic acid, 0.167 mol/L each of ethanol, methanol, glucose, L-glycine in 0.1 mol/L PBS(pH=7.4) at 0 V under 420 nm light excitation(C) and illustration of photoelectro-chemical process for GA oxidation at PANI-rGO-TiO2 modified ITO(D)[39](B) The photoelectrochemical sensors were applied at 0 V under 420 nm light excitation in 0.1 mol/L PBS(pH=7.4). Inset in (B) is the linear calibration curve. ^Copyright 2013, Royal Society of Chemistry.
Fig.5 Schematic illustration of the surface contact region between Bi2MoO6 and Bi2S3, TDOS and LDOS of the Bi2MoO6/Bi2S3 heterostructures, the energy levels for valence and conduction bands of Bi2MoO6/Bi2S3(A); photocurrents of GA, EC, CT, CHA, CA and MT on Bi2MoO6/Bi2S3(B) and photocurrent responses of Bi2MoO6/Bi2S3 modified ITO electrode upon different concentrations of GA(C)[42]Inset of (C) is the corresponding liner calibration. The photoelectrochemical sensor was applied at 0 V under 470 nm irradiation in 0.1 mol/L PBS(pH=7.4). Copyright 2017, Elsevier.
Fig.6 Photocurrents of 12 μmol/L PG, TBHQ, BHA, BHT and VE on MoS2/ZnO heterostructures(A); photocurrent responses of MoS2/ZnO heterostructures modified ITO electrodes upon different concentrations of PG(B) and chemical structures of five antioxidants and proposed mechanism of the MoS2/ZnO-based photoelectrochemical sensor for the detection of PG(C)[66] (B) The inset is the corresponding linear calibration. The preceding photoelectrochemical experiments were applied at 0 V(vs. Ag/AgCl) under 470 nm irradiation in 0.1 mol/L PBS(pH=7.4). Copyright 2019, American Chemical Society.
Fig.7 Schematic illustration of photoelectrochemical process for antioxidant capacity sensor designed with GO-TiO2 composites as source of OH radicals and DNA as a molecular probe(A) and agarose gel electrophoresis of different types of DNA(B) [40] Lane a: DNA markers; lanes b and c: DNA illuminated for 20 and 30 min with GOB-TiO2; lane d: after addition of gallic acid, DNA was illuminated 30 min with GOB-TiO2; lane e: DNA was illuminated 30 min without GOB-TiO2. Copyright 2013, Royal Society of Chemistry.
Sample | DNA sensor for GA/(mg·g-1) | F-C method for GA/(mg·g-1) | DPPH method for trolox/(mg·g-1) |
---|---|---|---|
B1 | 47.45 | 60.29 | 141.20 |
B2 | 66.61 | 62.94 | 201.10 |
B3 | 41.86 | 78.40 | 191.50 |
B4 | 24.34 | 18.55 | 49.90 |
B5 | 38.39 | 39.82 | 86.30 |
Table 1 Detection of antioxidant capacity by three different methods[40]
Sample | DNA sensor for GA/(mg·g-1) | F-C method for GA/(mg·g-1) | DPPH method for trolox/(mg·g-1) |
---|---|---|---|
B1 | 47.45 | 60.29 | 141.20 |
B2 | 66.61 | 62.94 | 201.10 |
B3 | 41.86 | 78.40 | 191.50 |
B4 | 24.34 | 18.55 | 49.90 |
B5 | 38.39 | 39.82 | 86.30 |
Fig.8 Schematic illustration of photoelectrochemical process for tea polyphenols oxidation at SGE-TiO2 modified ITO electrode[37] Copyright 2014, American Chemistry Society.
Fig.9 Photocurrent responses of SGE-TiO2 modified ITO electrode upon different concentrations of GA(A), CT(B), CA(C), EGC(D), EGCG(E) and ECG(F), respectively [37]Inset in each graph is the corresponding liner calibration curve. The photoelectrochemical sensors were applied at 0 V under 420 nm light excitation in 0.1 mol/L PBS(pH=7.4).Copyright 2014, American Chemistry Society.
Fig.10 Mechanism of the photoelectrochemical sensor for the detection of the antioxidant capacity[38]AO: antioxidant; Ex(eV): the redox potential of the antioxidants with respect to a vacuum; E(V): the redox potential of the antioxidants(vs. Ag/AgCl); IP(kJ/mol): ionization potential of the antioxidants; AC: antioxidant capacity obtained from the slope of the standard calibration curve of each antioxidant. Copyright 2014, Royal Society of Chemistry.
Fig.11 Photograph of the thin layer photoelectrochemical flow cell(A), concentration-dependent photocurrent of CA(B), CT(C) and AA(D)[38]Insets in (B)—(D) are the linear curves of CA, CT and AA, respectively. Copyright 2014, Royal Society of Chemistry.
Fig.12 Photograph of the integrated PEC platform(A) and photocurrent responses of the BiMo0.015V0.985O4 modified ITO electrode in the PEC platform without(blank: PBS solution) and with a certain volume of juice into 4 mL PBS(0.1 mol/L, pH=7.4)(B)[35]Copyright 2015, Royal Society of Chemistry.
Practical sample | Antioxidant capacity/(mg·L-1) | ||
---|---|---|---|
PEC sensor | F-C method | DPPH method | |
Mango | 356.38±6.80 | 369.73±2.63 | 267.61±1.46 |
Grape | 229.40±1.13 | 247.71±0.61 | 172.73±2.92 |
Apple | 257.45±4.95 | 252.01±2.43 | 176.86±2.53 |
Mangosteen | 265.54±6.63 | 308.44±5.27 | 182.01±3.86 |
Pitaye | 104.18±3.14 | 129.27±0.38 | 83.76±0.73 |
Orange | 445.59±9.12 | 468.67±1.52 | 281.66±1.82 |
Leechee | 540.48±1.01 | 564.39±3.04 | 325.50±3.16 |
Kiwi fruit | 601.12±5.38 | 611.73±4.56 | 344.83±11.38 |
Table 2 Antioxidant capacities of fresh fruits detected by different methods(n=3)[35]
Practical sample | Antioxidant capacity/(mg·L-1) | ||
---|---|---|---|
PEC sensor | F-C method | DPPH method | |
Mango | 356.38±6.80 | 369.73±2.63 | 267.61±1.46 |
Grape | 229.40±1.13 | 247.71±0.61 | 172.73±2.92 |
Apple | 257.45±4.95 | 252.01±2.43 | 176.86±2.53 |
Mangosteen | 265.54±6.63 | 308.44±5.27 | 182.01±3.86 |
Pitaye | 104.18±3.14 | 129.27±0.38 | 83.76±0.73 |
Orange | 445.59±9.12 | 468.67±1.52 | 281.66±1.82 |
Leechee | 540.48±1.01 | 564.39±3.04 | 325.50±3.16 |
Kiwi fruit | 601.12±5.38 | 611.73±4.56 | 344.83±11.38 |
Practical sample | Antioxidant capacity/(mg·g-1 or mg·L-1) | ||
---|---|---|---|
PEC sensor | F-C method | DPPH method | |
T1 | 18.78±0.80 | 35.82±0.25 | 54.84±0.24 |
T2 | 73.33±1.72 | 106.56±0.53 | 144.03±0.42 |
T3 | 108.63±1.91 | 120.87±0.70 | 161.18±0.85 |
T4 | 52.11±1.51 | 71.60±0.23 | 106.90±0.73 |
D1 | 387.19±0.62 | 420.30±1.07 | 203.64±2.39 |
D2 | 345.31±1.24 | 386.24±6.77 | 193.31±2.30 |
D3 | 396.16±4.34 | 437.52±1.32 | 318.36±7.59 |
D4 | 429.88±4.24 | 459.78±2.97 | 325.78±2.39 |
D5 | 316.78±0.98 | 337.46±2.21 | 185.21±1.53 |
D6 | 393.10±0.98 | 435.85±1.14 | 250.63±4.08 |
D7 | 457.50±3.01 | 492.08±1.14 | 566.88±3.28 |
D8 | 712.10±13.04 | 770.78±1.02 | 731.51±1.55 |
D9 | 641.11±9.59 | 701.33±3.70 | 728.08±1.37 |
D10 | 436.60±4.37 | 487.50±0.41 | 522.16±4.07 |
D11 | 296.41±0.76 | 310.27±1.70 | 164.06±2.06 |
D12 | 352.02±5.05 | 388.18±0.62 | 198.06±2.06 |
D13 | 391.22±1.42 | 432.17±1.03 | 232.09±4.07 |
Practical sample | Antioxidant capacity/(mg·g-1 or mg·L-1) | ||
PEC sensor | F-C method | DPPH method | |
D14 | 176.01±0.76 | 137.02±0.52 | 45.29±1.63 |
D15 | 58.07±0.36 | 34.43±0.19 | 27.96±0.73 |
D16 | 59.29±0.27 | 40.32±0.18 | 31.07±0.48 |
Table 3 Antioxidant capacities of commercial teas(T, mg/g) and drinks(D, mg/L) detected by different methods(n=3)[35]
Practical sample | Antioxidant capacity/(mg·g-1 or mg·L-1) | ||
---|---|---|---|
PEC sensor | F-C method | DPPH method | |
T1 | 18.78±0.80 | 35.82±0.25 | 54.84±0.24 |
T2 | 73.33±1.72 | 106.56±0.53 | 144.03±0.42 |
T3 | 108.63±1.91 | 120.87±0.70 | 161.18±0.85 |
T4 | 52.11±1.51 | 71.60±0.23 | 106.90±0.73 |
D1 | 387.19±0.62 | 420.30±1.07 | 203.64±2.39 |
D2 | 345.31±1.24 | 386.24±6.77 | 193.31±2.30 |
D3 | 396.16±4.34 | 437.52±1.32 | 318.36±7.59 |
D4 | 429.88±4.24 | 459.78±2.97 | 325.78±2.39 |
D5 | 316.78±0.98 | 337.46±2.21 | 185.21±1.53 |
D6 | 393.10±0.98 | 435.85±1.14 | 250.63±4.08 |
D7 | 457.50±3.01 | 492.08±1.14 | 566.88±3.28 |
D8 | 712.10±13.04 | 770.78±1.02 | 731.51±1.55 |
D9 | 641.11±9.59 | 701.33±3.70 | 728.08±1.37 |
D10 | 436.60±4.37 | 487.50±0.41 | 522.16±4.07 |
D11 | 296.41±0.76 | 310.27±1.70 | 164.06±2.06 |
D12 | 352.02±5.05 | 388.18±0.62 | 198.06±2.06 |
D13 | 391.22±1.42 | 432.17±1.03 | 232.09±4.07 |
Practical sample | Antioxidant capacity/(mg·g-1 or mg·L-1) | ||
PEC sensor | F-C method | DPPH method | |
D14 | 176.01±0.76 | 137.02±0.52 | 45.29±1.63 |
D15 | 58.07±0.36 | 34.43±0.19 | 27.96±0.73 |
D16 | 59.29±0.27 | 40.32±0.18 | 31.07±0.48 |
Fig.13 Inside(A), the whole instrument(B), one part of the two-EPCS(C), scheme of microfluidic chip(D) and profile of concentration vs. photocurrent of GA on the microfluidic chip(E)[41](1) The counter electrode(d=8.5 mm); (2) the working electrode(d=10.0 mm); (3) the inlet; (4) the outlet; (5) the lead wire of counter electrode; (6) the lead wire of working electrode. Copyright 2015, Elsevier.
[1] | Sohal R S .,Weindruch R., Science, 1996, ( 273), 59— 63 |
[2] | Harman D ., Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 1981, ( 78), 7124— 7128 |
[3] | Halliwell B ., J. Neurochem., 1992, ( 59), 1609— 1623 |
[4] | Perera R. M., Bardeesy N., Nature, 2011, ( 475), 43— 44 |
[5] | Mittler R ., Trends Plant Sci., 2002, ( 7), 405— 410 |
[6] | Velioglu Y. S., Mazza G., Gao L., Oomah B. D., J. Agric. Food Chem., 1998, ( 46), 4113— 4117 |
[7] | Eberhardt M. V ., Lee C. Y., Liu R. H., Nature, 2000, ( 405), 903— 904 |
[8] | Bedner M., Duewer D . L.,Anal. Chem., 2011, ( 83), 6169— 6176 |
[9] | Merken H M., .Beecher G. R., J. Agric. Food Chem., 2000, ( 48), 577— 599 |
[10] | Pukalskas A ., van Beek T. A.,de Waard P., J. Chromatogr. A, 2005, ( 1074), 81— 88 |
[11] | Prior R L .,Wu X. L.,Schaich K., J. Agric. Food Chem., 2005, ( 53), 4290— 4302 |
[12] | Ozyurek M., Guclu K., Apak R ., TRAC-Trends in Anal. Chem., 2011, ( 30), 652— 664 |
[13] | Ozyurek M., Gungor N., Baki S., Guclu K., Apak R ., Anal. Chem., 2012, ( 84), 8052— 8059 |
[14] | Kilmartin P. A., Zou H. L.,Waterhouse A. L., J. Agric. Food Chem., 2001, ( 49), 1957— 1965 |
[15] | Crevillen A. G ., Avila M.,Pumera M.,Gonzalez M. C.,Escarpa A., Anal. Chem., 2007, ( 79), 7408— 7415 |
[16] | Liu J., Su B., Lagger G., Tacchini P., Girault H. H., Anal. Chem., 2006, ( 78), 6879— 6884 |
[17] | Liu J F .,Roussel C.,Lagger G.,Tacchini P.,Girault H. H., Anal. Chem., 2005, ( 77), 7687— 7694 |
[18] | Koleva ,II, Niederlander H. A. G.,Van Beek T. A., Anal. Chem., 2000, ( 72), 2323— 2328 |
[19] | Tsao R., Yang R., Christopher J., Zhu Y., Zhu.H H ., J. Agric. Food Chem., 2003, ( 51), 6347— 6353 |
[20] | Li H., Li J., Xu Q., Hu X ., Anal. Chem., 2011, ( 83), 9681— 9686 |
[21] | Pardo-Yissar V., Katz E., Wasserman J., Willner I., J. Am. Chem. Soc., 2003, (125),622—623 |
22 | Sheeney-Haj-Khia L., Basnar B.,Willner I Angew. Chem. Int. Ed., 2005, ( 44), 78— 83 |
[23] | Xin Y. M., Li Z. Z., Wu W. L., Fu B. H., Wu H. J., Zhang Z. H., Biosens. Bioelectron., 2017, 87, 396— 403 |
[24] | Li X., Yu J. G., Jaroniec M., Chem. Soc. Rev., 2016, 45, 2603— 2636 |
[25] | Wang Q., Ruan Y., Zhao W., Lin P., Xu J., Chen H ., Anal. Chem., 2018, ( 90), 3759— 3765 |
[26] | Yu L., Zhu Y., Liu Y., Qu P., Xu M., Shen Q., Zhao W., Anal. Chem., 2018, 90, 10803— 10811 |
[27] | Zhan W W .,Kuang Q., Zhou J. Z.,Kong X. J.,Xie Z. X.,Zheng L. S., J. Am. Chem. Soc., 2013, ( 135), 1926— 1933 |
[28] | Zhang .S S.,Zhang S. Q.,Peng B. Y.,Wang H. J.,Yu H.,Wang H. H.,Peng F., Electrochem. Commun., 2014, ( 40), 24— 27 |
[29] | Tang J., Kong B., Wang Y.C .,Xu M.,Wang Y. L.,Wu H., Zheng G. F., Nano Letter, 2013, ( 13), 5350— 5354 |
[30] | Tu W. W ., Dong Y. T., Lei J. P., Ju H. X., Anal. Chem., 2010, ( 82), 8711— 8716 |
[31] | Zhao W W., .Ma Z. Y., Yan D. Y., Xu J. J., Chen H. Y.,Anal. Chem., 2012, ( 84), 10518— 10521 |
[32] | Y Li .J ., Ma M. J., Zhu J. J., Anal. Chem., 2012, ( 84), 10492— 10499 |
[33] | Zhao .W W ., Yu P. P., Shan Y., Wang J., Xu J. J., Chen H. Y., Anal. Chem., 2012, ( 84), 5892— 5897 |
[34] | W Zhao .W., Tian C. Y., Xu J. J.,Chen H. Y., Chem. Commun., 2012, ( 48), 895 |
[35] | Wang L N., .Han D. X., Ni S., MW. G., Wang W., Niu L.,Chem. Sci., 2015, ( 6), 6632— 6638 |
[36] | Ma W.G, Wang L. N., Zhang N., Han D. X., Dong X. D., Niu L ., Anal. Chem., 2015, ( 87), 4844— 4850 |
[37] | Wang L.N ., W. G. Ma, S. Y. Gan, D. X. Han, Q. X. Zhang, L. Niu, Anal. Chem., 2014, ( 86), 10171— 10178 |
[38] | Ma W.G ., D Han. X., Zhou M., Sun H., Wang L. N., Dong X. D., Niu L., Chem. Sci., 2014, ( 5), 3946— 3951 |
[39] | Ma W G.. Han D. X., Gan S. Y., Zhang N., Liu S. W., Wu T. S., Zhang Q. X., Dong X. D., Niu L., Chem. Commun., 2013, ( 49), 7842— 7844 |
[40] | W Ma. G ., Han D. X., Zhang N., Li F. H., Wu T. S., Dong X. D., Niu L., Analyst, 2013, ( 138), 2335— 2342 |
[41] | Han D.X ., Ma W. G., Wang L. N., Ni S., Zhang N., Wang W., Dong X. D., Niu L., Biosens. Bioelectron., 2015, ( 75), 458— 464 |
[42] | Wang L., Liu Z., Wang D., Ni S., Han D., Wang W., Niu L ., Biosens. Bioelectron. 2017, ( 94), 107— 114 |
[43] | Jiang D., Du X., Zhou L., Li H., Wang K ., Anal. Chem., 2017, ( 89), 4525— 4531 |
[44] | Zhang Z.J., Wang W. Z, Wang, L., Sun S. M., ACS Appl. Mater. Interf., 2012, ( 4), 593— 597 |
[45] | Li H P. .,Liu J Y., Hou W. G., Du ., Zhang R., Appl. Catal. B: Environ., 2014, ( 160), 89— 97 |
[46] | Zhao K., Yan X., Gu Y., Kang Z., Bai Z., Cao S., Liu Y., Zhang X., Zhang Y ., Small, 2016, 12( 2), 245— 251 |
[47] | Kang Z., Yan X., Wang Y., Bai Z., L., Zhang Z., Lin P., Zhang X., Yuan H., Zhang X., Zhang Y., Scientific Reports, 2015, 5, 7882— 7888 |
[48] | Li Z., Zhang J., Li Y., Zhao S., Zhang P., Zhang Y., Bi J., Liu G., Yue Z., Biosens. Bioelectron., 2018, 99, 251— 258 |
[49] | Bouayed J., Bohn T ., Oxidative Medicine and Cellular Longevity, 2010, ( 3), 228— 237 |
[50] | Kang Q., Wang X., Ma X., Kong L., Zhang P., Shen D., Sens. Actuators B, 2016, 230, 231— 241 |
[51] | Monteiro T., Tanaka A., Damos F., Luz R ., Food Chem., 2017, ( 227) 16— 21 |
[52] | Monteiro T., Neto S., Damos F., Luz R., J. Electroanal. Chem., 2016, 774, 36— 41 |
[53] | Watjen W., Michels G., Steffan B.R .,Niering P., Chovolou Y., Kampkotter A., Tran-Thi Q H., Proksch P., Kahl R., .,Journal of Nutrition, 2005, ( 135), 525— 531 |
[54] | Galati G., Lin A., Sultan A M., O’Brien P J., .,Free Radical Biol. Med., 2006, ( 40), 570— 580 |
[55] | Robaszkiewicz A., Balcerczyk A., Bartosz G ., Cell Biol. Int., 2007, ( 31), 1245— 1250 |
[56] | De Marchi U., Biasutto L., Garbisa S., Toninello A., Zoratti M., Biochim. Biophys. Acta-Bioenerg., 2009, 1787, 1425— 1432 |
[57] | Lima D. R. S., M. Cossenza, Garcia C. G., Portugal C. C., Marques F. F. d. C., Paes-de-Carvalho R., Pereira Netto A. D., Anal. Methods, 2016, 8, 5441— 5447 |
[58] | Liu J., Chen Y., Wang W., Feng J., Liang M., Ma S., Chen X., J. Agric. Food Chem., 2016, 64, 371— 380 |
[59] | Jothi L., Neogi S., Jaganathan S. K., Nageswaran G., Biosens. Bioelectron., 2018, 105, 236— 242 |
[60] | Noroozifar M., Khorasani-Motlagh M., Akbari R., Bemanadi Parizi M., Biosens. Bioelectron., 2011, 28, 56— 63 |
[61] | Chen H., Li W., Zhao P., Nie Z., Yao S ., Electrochimica Acta, 2015, ( 178), 407— 413 |
[62] | Mazhabi R. M .,Ge L.,Q Jiang.,H Wang X.,.,Biosens. Bioelectron., 2018, ( 107), 54— 61 |
[63] | Naczk M., Shahidi F ., J. Pharm. Biomed. Anal., 2006, ( 41), 1523— 1542 |
[64] | Cui M., Huang J., Wang Y., Wu Y., Luo X., Biosens. Bioelectron., 2015, 68, 563— 569 |
[65] | Andre C., Castanheira I., Cruz J., Paseiro P., Sanches-Silva A ., Trends Food Sci. Technol. 2010, ( 21), 229— 246 |
[66] | Han F. J., Song Z. Q., Nawaz M. H., Dai M. J., Han D. F., Han L. P., Fan Y. Y., Xu J. N., Han D. X., and Niu L., Anal. Chem., 2019, 91, 10657— 10662 |
[67] | Vikraman A., Rasheed Z., Rajith L., Lonappan L., Krishnapillai K., Food Anal. Methods, 2013, 6, 775— 780 |
[68] | Ni S., Han F. J., Wang W., Han D. F., Bao Y., Han D. X., Wang H. Y., Niu L., Sen. Actuators B, 2018, 259, 963— 971 |
[1] | 王杰, 李莹, 邵亮, 白阳, 马忠雷, 马建中. 聚乙烯醇/聚吡咯复合导电水凝胶应变传感器的制备及性能[J]. 高等学校化学学报, 2021, 42(3): 929-936. |
[2] | 沙卉雯, 马维廷, 周晓娟, 宋卫星. 激光诱导三维网状石墨烯的一步法制备及应用[J]. 高等学校化学学报, 2021, 42(2): 607-614. |
[3] | 廖妮, 张捷源, 黄梓阳, 赵晏汐, 柴雅琴, 袁若, 卓颖. 共晶诱导增强的电化学发光9,10-二苯基蒽-苝微晶构建高效尿酸传感器[J]. 高等学校化学学报, 2020, 41(9): 1989-1995. |
[4] | 曹成,曹甜,闫盆吉,王清云,岳国仁,籍向东. 烯醇-酮互变异构型亚胺衍生物对Co2+的高选择性识别[J]. 高等学校化学学报, 2020, 41(7): 1544-1551. |
[5] | 付可飞, 连惠婷, 魏晓峰, 孙向英, 刘斌. 环糊精基阻抗型传感器的制备及对L-半胱氨酸的识别[J]. 高等学校化学学报, 2020, 41(4): 706-715. |
[6] | 袁中文, 贺利贞, 陈填烽. 单原子催化剂的生物医学应用[J]. 高等学校化学学报, 2020, 41(12): 2690-2709. |
[7] | 宁湫洋, 冯微, 吴国光. 瓶状InN-In2O3纳米复合材料的制备及增强的甲醛气敏性能[J]. 高等学校化学学报, 2020, 41(12): 2804-2812. |
[8] | 阿丽, 王勇. 多肽荧光传感器检测铜离子[J]. 高等学校化学学报, 2020, 41(12): 2736-2741. |
[9] | 张怡萌, 张慧欣, 刘洋. 外泌体生物分析及其临床应用研究进展[J]. 高等学校化学学报, 2020, 41(11): 2306-2323. |
[10] | 李勃天,邵伟,肖达,周雪,董俊伟,唐黎明. 聚吡咯纳米线凝胶的模板制备及储能与电化学传感性能[J]. 高等学校化学学报, 2020, 41(1): 183-190. |
[11] | 滕渝,杨绍明,柏朝朋,张剑. 基于多壁碳纳米管增敏材料的辣根过氧化物酶分子印迹电化学传感器的制备及对H2O2的检测[J]. 高等学校化学学报, 2020, 41(1): 78-86. |
[12] | 郑姗, 刘洋, 陈飘飘, 邢怡晨, 黄朝表. 基于PbS QDs/TiO2 NPs构建新型谷胱甘肽光电化学传感器[J]. 高等学校化学学报, 2019, 40(9): 1866-1872. |
[13] | 周羽婷, 汤玉娇, 邵爽, 戴诗岩, 程圭芳, 何品刚, 方禹之. 构象转换型传感器对汞、 铅、 锶离子的同时检测[J]. 高等学校化学学报, 2019, 40(8): 1621-1627. |
[14] | 马玉坤, 王海君, 郭梦岩. 狼毒乙素分子印迹膜荧光传感器的制备及在中药材检测中的应用[J]. 高等学校化学学报, 2019, 40(7): 1381-1389. |
[15] | 李翠勤, 翟雪, 孙鹏, 高宇新, 张志秋, 王俊, 李锋. 树状桥联半受阻酚类抗氧剂的合成与抗氧化性能[J]. 高等学校化学学报, 2019, 40(7): 1535-1543. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||