高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (8): 2359.doi: 10.7503/cjcu20210012
潘晓君1,2,3, 鲍容容2,3,4(), 潘曹峰2,3,4(
)
收稿日期:
2021-01-04
出版日期:
2021-08-10
发布日期:
2021-08-05
通讯作者:
潘曹峰
E-mail:baorongrong@binn.cas.cn;cfpan@binn.cas.cn
作者简介:
鲍容容, 女, 博士, 副研究员, 主要从事有机-无机纳米器件和柔性压力传感器的制备与表征研究. E-mail: 基金资助:
PAN Xiaojun1,2,3, BAO Rongrong2,3,4(), PAN Caofeng2,3,4(
)
Received:
2021-01-04
Online:
2021-08-10
Published:
2021-08-05
Contact:
PAN Caofeng
E-mail:baorongrong@binn.cas.cn;cfpan@binn.cas.cn
摘要:
可穿戴柔性触觉传感器是用来模仿人类触觉的器件, 可以感知人体以及外界环境的运动、 形变和压力等信息, 在智慧医疗和智能机器人等领域具有广泛的应用前景. 近年来, 大量柔性触觉传感器的研究使其性能得到了巨大的提升, 并在很多领域得到了应用. 本文首先简述了柔性触觉传感器的结构和基本性能; 然后重点介绍了具有自愈合、 自驱动以及可视化等新型高性能触觉传感器的研究进展; 接下来讨论了柔性触觉传感器在可穿戴电子技术、 医疗保健以及人机交互界面等方面的应用; 最后展望了柔性触觉传感器未来所面临的机遇与挑战.
中图分类号:
TrendMD:
潘晓君, 鲍容容, 潘曹峰. 可穿戴柔性触觉传感器的研究进展. 高等学校化学学报, 2021, 42(8): 2359.
PAN Xiaojun, BAO Rongrong, PAN Caofeng. Research Progress of Flexible Tactile Sensors Applied to Wearable Electronics. Chem. J. Chinese Universities, 2021, 42(8): 2359.
Fig. 1 Schematic illustration of the sensing mechanism of flexible tactile sensor(A) The proposed working mechanism of the micro-cracked strain sensor[20]. Copyright 2017, Elsevier Ltd.; (B) schematic illustration of the sensing mechanism[17]. Copyright 2014, Springer Nature; (C) working principle of piezoelectric tactile sensor[21].Copyright 2019, Wiley-VCH; (D) schematic of main working modes of TENGs[23]. Copyright 2019, Elsevier Ltd.; (E) capacitive tactile sensor[24]. Copyright 2014, Wiley-VCH.
Fig.2 Basic structure of the flexible tactile sensor(A) A strain sensor with silver nanoparticles bridged by carbon nanotubes as a sensitive layer[31]. Copyright 2019, Wiley-VCH; (B) crack changes under strain for a strain sensor with graphene as a sensitive layer[41]. Copyright 2019, Wiley-VCH; (C) pressure sensor with carbonized silk fiber as sensitive layer[42]. Copyright 2017, Wiley-VCH; (D) stretchable pressure sensors coated with PEDOT∶PSS on pyramid surfaces[50]. Copyright 2014, Wiley-VCH.
Fig.3 Electrodes and substrates(A) CuS network transparent electrode[51]. Copyright 2016, Royal Society of Chemistry; (B) high-temperature resistant organic gel ion conductor[54]. Copyright 2019, American Chemical Society; (C)mechanical properties of poly(3-hexylthiophene) films[65]. Copyright 2019, Elsevier B.V.; (D) matrix network with island bridge structure[67]. Copyright 2019, Springer Nature.
Fig.4 Basic performance of flexible tactile sensors(A) Schematic diagram of a pressure sensor containing a microhair structure[68]. Copyright 2014, Wiley-VCH; (B) self-assembly process and pressure response sensitivity curves of pressure sensors[83]. Copyright 2019, Elsevier Ltd.; (C) the microstructure of different structure: (Ⅰ) the microstructure of the pyramid[75], Copyright 2014, Wiley-VCH; (Ⅱ) microsphere interlock structure[76], Copyright 2014, American Chemical Society; (Ⅲ) microstructures with blades as templates[78], Copyright 2017, Wiley-VCH; (Ⅳ) a tiny structure modeled on silk[79], Copyright 2013, Wiley-VCH; (D) cyclic stability of Ag NFs[5], Copyright 2018, Wiley-VCH.
Fig.5 A new flexible tactile sensor(A) Schematic illustration of the self-healable conductive polymer composit[48]. Copyright 2017, Wiley-VCH. (B) The working mechanism of the friction nano generator[91] and the electrical output performance of the self-driven tactile sensor[93]. Copyright 2018, Wiley-VCH; Copyright 2020, Elsevier Ltd. (C) Visual tactile sensor I—V curve characteristics of single ZnO nanowires under different pressures and visual display of letter E under different pressures[98]. Copyright 2017, Wiley-VCH. (D) Degradation process of biodegradable tactile sensors[109]. Copyright 2019, American Chemical Society.
Fig.6 Applications of flexible tactile sensors(A) Cardiac ACG signal resolution measurement system[112]. Copyright 2016, Wiley-VCH; (B) a real-time cardiac detection system that provides feedback through color changes[116]. Copyright 2017, American Chemical Society; (C) gloves with microcrack strain sensors can be used to control precise movement[80]. Copyright 2020, AIP Publishing; (D) pressure sensors that can detect arterial pulse signals[83]. Copyright 2019, Elsevier Ltd.
1 | Dahiya R. S., Metta G., Valle M., Sandini G., IEEE Transactions on Robotics, 2010, 26(1), 1—20 |
2 | Zhang Q., Niu S., Wang L., Lopez J., Chen S., Cai Y., Du R., Liu Y., Lai J. C., Liu L., Li C. H., Yan X., Liu C., Tok J. B. H., Jia X., Bao Z., Adv. Mater., 2018, 30, 1801435 |
3 | Zhang L. M., He Y., Cheng S., Sheng H., Dai K., Zheng W. J., Wang M. X., Chen Z. S., Chen Y. M., Suo Z., Small, 2019, 15, 1804651 |
4 | Tao J., Bao R., Wang X., Peng Y., Li J., Fu S., Pan C. F., Wang Z. L., Adv. Funct. Mater., 2019, 29, 1806379 |
5 | Wang X., Zhang Y. F., Zhang X., Huo Z. H., Li X. Y., Que M. L., Peng Z., Wang H., Pan C. F., Adv. Mater., 2018, 30, 1706738 |
6 | Shin J., Jeong B., Kim J., Nam V., Yoon Y., Jung J., Hong S., Lee H., Eom H., Yeo J., Choi J., Lee D., Ko S., Adv. Mater., 2020, 32, 1905527 |
7 | Lee J. S., Shin K. Y., Cheong O. J., Kim J. H., Jang J., Sci. Rep., 2015, 5, 7887 |
8 | Cao Z., Yang Y., Zheng Y., Wu W., Xu F., Wang R., Sun, J., J. Mater. Chem. A, 2019, 7, 25314—25323 |
9 | Huang X., Liu Y., Chen K., Shin W. J., Lu C. J., Kong G. W., Patnaik D., Lee S. H., Cortes J. F., Rogers J. A., Small, 2014, 10, 3083—3090 |
10 | lfadhel A., Kosel J., Adv. Mater., 2015, 27, 7888—7892 |
11 | Feng W., Qin C., Shen Y., Li Y., Luo W., An H., Feng Y., Sci. Rep., 2015, 4, 3777 |
12 | Das A., Pradhapan P., Groenendaal W., Adiraju P., Rajan R. T., Catthoor F., Van Hoof C., Neural Networks, 2018, 99, 134— 147 |
13 | Son D., Lee J., Qiao S., Ghaffari R., Kim J., Lee J. E., Kim D. H., Nature Nanotech., 2014, 9, 397—404 |
14 | Esposito D., Andreozzi E., Fratini A., Gargiulo G. D., Savino S., Niola V., Bifulco P., Sensors, 2018, 18, 2553 |
15 | Meglič A., Uršič M., Škorjanc A., Đorđević S., Belušič G., Sensors, 2019, 19, 2108 |
16 | Yousef H., Boukallel M., Althoefer K., Sensors and Actuators A: Physical, 2011, 167(2), 171—187 |
17 | Gong S., Schwalb W., Wang Y., Chen Y., Tang Y., Si J., Cheng W., Nat. Commun., 2014, 5, 3132 |
18 | Boutry C. M., Nguyen A., Lawal Q. O., Chortos A., Bao Z. N., Adv. Mater., 2015, 27, 6954—6961 |
19 | Chen Z., Wang Z., Li X., Lin Y., Luo N., Long M., Xu J. B., ACS Nano, 2017, 11(5), 4507—4513 |
20 | Wang C., Zhao J., Ma C., Sun J., Tian L., Li X., Pan C. F., Nano Energy, 2017, 34, 578—585 |
21 | Wang C., Dong L., Peng D., Pan C. F., Adv. Intell. Syst., 2019, 1, 1900090 |
22 | Xu C., Zi Y., Wang A. C., Zou H., Dai Y., He X., Wang P., Wang Y. C., Feng P., Li D., Wang Z. L., Adv. Mater., 2018, 30, 1706790 |
23 | Dharmasena R., Silva S. R., Nano Energy, 2019, 62, 530—549 |
24 | Sun J. Y., Keplinger C., Whitesides G. M., Suo Z., Adv. Mater., 2014, 26, 7608—7614 |
25 | Chen M., Luo W., Xu Z., Zhang X., Xie B., Wang G., Han M., Nat. Commun., 2019, 10, 4024 |
26 | Zhao X., Guo J., Xiao T., Zhang Y., Yan Y., Grzybowski B. A., Adv. Mater., 2019, 31, 1804864 |
27 | Ho M. D., Ling Y., Yap L. W., Wang Y., Dong D., Zhao Y., Cheng W., Adv. Funct. Mater., 2017, 27, 1700845 |
28 | Araki T., Uemura T., Yoshimoto S., Takemoto A., Noda Y., Izumi S., Sekitani T., Adv. Mater., 2020, 32, 1902684 |
29 | Yun J., Adv. Funct. Mater., 2017, 27, 1606641 |
30 | Lee J., Kim S., Lee J., Yang D., Park B. C., Ryu S., Park I., Nanoscale, 2014, 6, 11932—11939 |
31 | Huang J., Li D., Zhao M., Mensah A., Lv P., Tian X., Huang F., Ke H., Wei Q., Adv. Electron.Mater., 2019, 5, 1900241 |
32 | Kim J. S., Lee S. C., Hwang J., Adv. Funct. Mater., 2020, 30, 1908993 |
33 | Qin J. Q., Gao J. M., Shi X. Y., Adv. Funct. Mater., 2020, 30, 1909756 |
34 | Wang H. M., Li S., Wang Y. L., Wang H. M., Shen X. Y., Zhang M. C., Lu H. J., He M. S., Zhang Y. Y., Adv. Mater., 2020, 32, 1908214 |
35 | Gao Y., Guo F., Cao P., Liu J., Li D., Wu J., Zhao Y., ACS Nano, 2020, 14(3), 3442—3450 |
36 | Zhai W., Xia Q., Zhou K., Yue X., Ren M., Zheng G., Shen C., Chem. Eng. J., 2019, 372, 373—382 |
37 | Tas M., Baker M. A., Masteghin M. G., Bentz J., Boxshall K., Stolojan V., ACS Appl. Mater. Interfaces, 2019, 11(43), 39560— 39573 |
38 | Zhu B., Niu Z., Wang H., Leow W. R., Wang H., Li Y., Zheng L., Wei J., Huo F. Chen X., Small, 2014, 10, 3625—3631 |
39 | Bae G.Y., Pak S.W., Kim D., Lee G., Kim D.H., Chung Y. Cho K., Adv. Mater., 2016, 28, 5300—5306 |
40 | Lu Y., Tian M., Sun X., Pan N., Chen F., Zhu S., Chen S., Composites Part A, 2019, 117, 202—210 |
41 | Deng C. H., Gao P. X., Lan L. F., He P. H., Zhao X., Zheng W., Chen W. S., Zhong X. Z., Wu Y. H., Liu L., Peng J. B., Cao Y., Adv. Funct. Mater., 2019, 29, 1907151 |
42 | Wang Q., Jian M. Q., Wang C.Y., Zhang Y. Y., Adv. Funct. Mater., 2017, 27, 1605657 |
43 | Li Y. Q., Huang P., Zhu W. B., Fu S. Y., Hu N., Liao K., Sci. Rep., 2017, 7, 45013 |
44 | Niu H., Zhou H., Wang H., Lin T., Macromol. Mater. Eng., 2016, 301, 707—713 |
45 | Hwang B., Lee J., Trung T., Roh E., Kim D., Kim S., Lee N., ACS Nano, 2015, 9, 8801—8810 |
46 | Lipomi D., Lee J., Vosgueritchian M., Tee B., Bolander J., Bao Z., Chem. Mater., 2012, 24(2), 373—382 |
47 | Zhu M., Shi Q., He T., Yi Z., Ma Y., Yang B., Lee C., ACS Nano, 2019, 13, 1940—1952 |
48 | Wang T., Zhang Y., Liu Q., Cheng W., Wang X., Pan L., Xu B., Xu H., Adv. Funct. Mater., 2018, 28, 1705551 |
49 | Park H., Jeong Y. R., Yun J., Hong S. Y., Jin S., Lee S. J., Ha J. S., ACS Nano, 2015, 9, 9974—9985 |
50 | Choong C. L., Shim M. B., Lee B. S., Jeon S., Ko D. S., Kang T. H., Bae J., Lee S. H., Byun K. E., Im J., Jeong Y., Park C. E., Park J., Chung U., Adv. Mater., 2014, 26, 3451—3458 |
51 | Zhang X., Guo W., Gao G., Que M., Pan C. F., Wang, Z. L., J. Mater. Chem. C, 2016, 4, 4733—4739 |
52 | Li P., Zhao Y., Ma J., Yang Y., Xu H., Liu Y., Adv. Mater. Technol., 2020, 5, 1900823 |
53 | Kim C., Lee H., Oh K., Sun J., Science, 2016, 353, 682—687 |
54 | Gao Y., Shi L., Lu S., Zhu T., Da X., Li Y., Ding S., Chem. Mater., 2019, 31(9), 3257—3264 |
55 | Kim D., Lu N., Ghaffari R., Kim Y., Lee S., Xu L., Rogers J., Nature Mater., 2011, 10, 316—323 |
56 | Keplinger C., Sun J., Foo C., Rothemund P., Whitesides G., Suo Z., Science, 2013, 341,6149, 984—987 |
57 | Yin X., Zhang Y., Cai X., Guo Q., Yang J., Wang Z., Mater. Horiz., 2019, 6, 767—780 |
58 | Lee J., Tan M. W. M., Parida K., Thangavel G., Park S. A., Park T., Lee P. S., Adv. Mater., 2020, 32, 1906679 |
59 | Wang J., Jiang J. F., Zhang C. C., Sun M. Y., Han S. W., Zhang R. T., Liang N., Sun D. H., Liu H., Nano Energy, 2020, 76, 105050 |
60 | Qin Y., Peng Q., Ding Y., Lin Z., Wang C., Li Y., Xu F., He X. D., Li Y. B., ACS Nano, 2015, 9(9), 8933—8941 |
61 | Olichwer N., Leib E. W., Halfar A. H., Petrov A., Vossmeyer T., ACS Appl. Mater. Interfaces, 2012, 4(11), 6151—6161 |
62 | Wan, J., Jiu J., Nogi M., Sugahara T., Nagao S., Koga H., Suganuma K., Nanoscale, 2015, 7, 2926—2932 |
63 | Jiang D., Wang Y., Li B., Sun C., Wu Z., Yan H., Xing L., Qi S., Li Y., Liu H., Xie W., Wang X., Ding T., Guo Z., Macromol. Mater. Eng., 2019, 304, 1900074 |
64 | Liu H., Li Q., Bu Y., Zhang N., Wang C., Pan C., Shen C., Nano Energy, 2019, 66, 104143 |
65 | Ashizawa M., Zheng Y., Tran H., Bao Z. N., Prog. Polym. Sci., 2019, 100, 101181 |
66 | Zhao X., Hua Q., Yu R., Zhang Y., Pan C. F., Adv. Electron. Mater., 2015, 1, 1500142 |
67 | Hua Q. L., Sun J. L., Liu H., Bao R. R., Yu R., Zhai J. Y., Pan, C. F., Wang, Z. L., Nat. Commun., 2018, 9, 244 |
68 | Pang C., Koo J. H., Nguyen A., Caves J. M., Kim M. G., Chortos A., Kim K., Wang P. J., Tok J. B., Bao Z. N., Adv. Mater., 2015, 27, 634—640 |
69 | Kang D., Pikhitsa P. V., Choi Y. W., Lee C., Shin S. S., Piao L., Kim T., Choi M., Nature, 2014, 516, 222—226 |
70 | Li G., Chen D., Li C. L., Liu W. X., Liu H., Adv. Sci., 2020, 7, 2000154 |
71 | Cai J. H., Li J., Chen X. D., Wang M., Chem. Eng. J., 2020, 393, 124805 |
72 | Yu Z., Ying W. B., Pravarthana D., Li Y. Y., Mao G. Y., Liu Y. W., Hu C., Zhang W. X., He P., Zhong Z. C., Qu S. X., Zhang R. Y., Shang J., Zhu J., Li R. W., Mater. Today Phys., 2020, 14, 100219 |
73 | Ruth S. R. A., Beker L., Tran H., Feig V. R., Matsuhisa N., Bao Z. N., Adv. Funct. Mater., 2020, 30, 1903100 |
74 | Mannsfeld S. C., Tee B. C., Stoltenberg R., Chen C., Barman S., Muir B., Bao Z. N., Nature Mater., 2010, 9, 859—864 |
75 | Tee B., Chortos A., Dunn R., Schwartz G., Eason E., Bao Z. N., Adv. Funct. Mater., 2014, 24, 5427—5434 |
76 | Park J., Lee Y., Hong J., Lee Y., Ha M., Jung Y., Ko H., ACS Nano, 2014, 8(12), 12020—12029 |
77 | Xia K., Wang C., Jian M., Wang Q., Zhang Y., Nano Res., 2018, 11, 1124—1134 |
78 | Jian M. Q., Xia K. L., Wang Q., Yin Z., Wang H. M., Wang C. Y., Xie H. H., Zhang M. C., Zhang Y. Y., Adv. Funct. Mater., 2017, 27, 1606066 |
79 | Wang X., Gu Y., Xiong Z., Cui Z., Zhang T., Adv. Mater., 2014, 26, 1336—1342 |
80 | Li J., Bao R. R., Tao J. Dong M., Zhang Y. F., Fu S., Peng D. F., Pan, C. F., Appl. Phys. Rev., 2020, 7(1), 011404 |
81 | Shu Y., Tian H., Yang Y., Li C., Cui Y., Mi W., Ren T. L., Nanoscale, 2015, 7(18), 8636—8644 |
82 | Shi J. D., Wang L., Dai Z. H., Y. Zhao L., Du M. D., Li H. B., Fang Y., Small, 2018, 14, 1800819 |
83 | He J., Xiao P., Lu W., Shi J., Zhang L., Liang Y., Pan C. F., Kuo S. W, Chen T., Nano Energy, 2019, 59, 422—433 |
84 | Chen J., Zheng J., Gao Q., Zhang J., Zhang J., Omisore O. M., Wang L., Li H., Appl. Sci., 2018, 8, 345 |
85 | Gu J., Kwon D., Ahn J., Park I., ACS Appl. Mater. Interfaces, 2020, 12(9), 10908—10917 |
86 | Amjadi M., Pichitpajongkit A., Lee S., Ryu S., Park I., ACS Nano, 2014, 8(5), 5154—5163 |
87 | Zhang F., Wu S., Peng S., Sha Z., Wang C., Compos. Sci. Technol., 2019, 172(1), 7—16 |
88 | Liu X., Su G., Guo Q., Lu C., Zhou T., Zhou C., Zhang X., Adv. Funct. Mater., 2018, 28, 1706658 |
89 | Cao J., Zhang X., Lu C., Luo Y., Zhang X., Macromol. Rapid Commun., 2017, 38, 1700406 |
90 | Gao G., Yu J., Yang X., Pang Y., Zhao J., Pan C. F., Sun Q., Wang Z. L., Adv. Mater., 2019, 31, 1806905 |
91 | Fan F. R., Tian Z. Q., Wang Z. L., Nano Energy, 2012, 1(2), 328—334 |
92 | Wang Z. L., Materials today, 2017, 20(2), 74—82 |
93 | Wei X. Y., Wang X., Kuang S. Y., Su L., Li H. Y., Wang Y., Pan C. F., Wang Z. L. Zhu G., Adv.Mater., 2016, 28, 6656— 6664 |
94 | Zhou K., Zhao Y., Sun X., Yuan Z., Zheng G., Dai K., Mi L. W., Pan C. F., Liu C. T., Shen C., Nano Energy, 2020, 70, 104546 |
95 | Yang J., Chen J., Su Y., Jing Q., Li Z., Yi F., Wen X., Wang Z., Wang Z. L., Adv. Mater., 2015, 27, 1316—1326 |
96 | Sun J., Hua Q., Zhou R., Li D., Guo W., Li X., Hu G. F., Shan C. X., Meng X. B., Dong L., Pan C. F., Wang Z. L., ACS Nano, 2019, 13(4), 4507—4513 |
97 | Wu W., Wang X., Han X., Yang Z., Gao G., Zhang Y., Hu J., Tan Y. W., Pan, A. L., Pan C. F., Adv. Mater., 2019, 31, 1805913 |
98 | Han X., Du W., Chen M., Wang X., Zhang X., Li X., Li J., Peng Z., Pan C. F., Wang Z. L., Adv.Mater., 2017, 29, 1701253 |
99 | Park B., Kim J. U., Kim J., Tahk D., Jeong C., Ok J., Shin J. H., Kang D., Kim T., Adv. Funct. Mater., 2019, 29, 1903360 |
100 | Zhou X., Xu X., Zuo Y., Liao M., Shi X., Chen C., Xie S. L., Zhou P., Sun X. M., Peng H., J. Mater. Chem. C, 2020, 8, 935— 942 |
101 | Peng Y. Y., Que M. L., Lee H. E., Bao R. R., Wang, X. D., Lu, J. F., Yuan, Z. Q., Li X. Y., Tao J., Sun J. L., Zhai J. Y., Pan C. F., Nano Energy, 2019, 58, 633—640 |
102 | Wang C., Yu Y., Yuan, Y. H., Ren C. Y., Liao Q. Y., Wang J. Q., Chai Z. F., Li Q. Q., Li Z., Matter, 2020, 2(1), 181—193 |
103 | Zhao X., Zhang Z., Liao Q. L., Xun X. C., Gao F. F., Xu L. X., Kang Z., Zhang Y., Sci. Adv., 2020, 6, eaba4294 |
104 | Zeng S., Zhang D., Huang W., Wang Z., Freire S. G., Yu X., Sun L. Y., Nat. Commun., 2016, 7, 11802 |
105 | Qian X., Cai Z., Su M., Li F., Fang W., Li Y., Zhou X., Li Q., Feng X., Li W., Hu X. T., Wang X., Pan C., Song Y., Adv. Mater., 2018, 30, 1800291 |
106 | Li J., Bao R. R., Tao J., Peng Y. Y., Pan C. F., J. Mater. Chem. C, 2018, 6, 11878—11892 |
107 | Ploetz E., Zimpel A., Cauda V., Bauer D., Lamb D. C., Haisch C., Zahler S., Vollmar A. M., Wuttke S., Engelke H., Adv. Mater., 2020, 32, 1907267 |
108 | Wang Z., Chen J., Cong Y., Zhang H., Xu T., Nie L., Sun X. M., Fu J., Chem. Mater., 2018, 30(21), 8062—8069 |
109 | Guo Y., Zhong M., Fang Z., Wan P., Yu G., Nano Lett., 2019, 19(2), 1143—1150 |
110 | Yao S., Swetha P., Zhu Y., Adv. Healthcare Mater., 2018, 7, 1700889 |
111 | Lanata A., Scilingo E. P., Nardini E., Loriga G., Paradiso R., De-Rossi D., IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2), 378—386 |
112 | You I., Kim B., Park J., Koh K., Shin S., Jung S. Jeong U., Adv. Mater., 2016, 28, 6359—6364 |
113 | Gao Y., Yan C., Huang H., Yang T., Tian G., Xiong D., Chen N., Chu X., Zhong S., Deng W., Fang Y., Yang W., Adv. Funct. Mater., 2020, 30, 1909603 |
114 | Chung H., Kim B. H., Lee J. Y., Xie Z., Ibler E., Lee K., Banks A., Jeong J., Kim J., Ogle C., Grande D., Yu Y., Jang H., Assem P., Ryu D., Kwak J., Namkoong M., Park J., Paller A., Xu S., Rogers J., Science, 2019, 363(6430), eaau0780 |
115 | He W., Wang C., Wang H., Jian M., Lu W., Liang X., Zhang X., Yang F., Zhang Y., Sci. Adv., 2019, 5(11), eaax0649 |
116 | Koo J. H., Jeong S., Shim H. J., Son D., Kim J., Kim D. C., Kim D. H., ACS Nano, 2017, 11(10), 10032—10041 |
117 | Yamada T., Hayamizu Y., Yamamoto Y., Yomogida Y., Izadi-Najafabadi A., Futaba D. N., Hata K., Nature Nanotech, 2011, 6, 296—301 |
118 | Wang Y., Wang L., Yang T., Li X., Zang X., Zhu M., Wang K., Wu D. Zhu H., Adv. Funct. Mater., 2014, 24, 4666—4670 |
119 | Roh E., Hwang B. U., Kim D., Kim B. Y., Lee N. E., ACS Nano, 2015, 9, 6252 |
120 | Gong S., Lai D. T. H., Wang Y., Yap L. W., Si K. J., Shi Q., Cheng W., ACS Appl. Mater.Interfaces, 2015, 7(35), 19700—19708 |
121 | Sundaram S., Kellnhofer P., Li Y., Zhu J. Y., Torralba A., Matusik W., Nature, 2019, 569, 698—702 |
122 | Boutry C. M., Negre M., Jorda M., Vardoulis O., Chortos A., Khatib O., Bao Z. N., Sci. Robot., 2018, 3(24), eaau6914 |
[1] | 蔡雅倩, 张家怀, 刘方哲, 李海潮, 石建平, 关爽. Hofmeister效应辅助的蛋白质基水凝胶应变传感器[J]. 高等学校化学学报, 2021, 42(8): 2609. |
[2] | 张鋆, 刘忆旋, 杜晓慧, 杨辉. 基于高黏附可拉伸高分子材料的人机交互界面[J]. 高等学校化学学报, 2021, 42(4): 1093. |
[3] | 王杰, 李莹, 邵亮, 白阳, 马忠雷, 马建中. 聚乙烯醇/聚吡咯复合导电水凝胶应变传感器的制备及性能[J]. 高等学校化学学报, 2021, 42(3): 929. |
[4] | 司文燕, 张红娣, 刘燕杰, 赵艾靖, 张志广, 公茂刚, 张君诚, 龙云泽. 低压近场静电纺丝ZnO/PVDF复合微米纤维阵列的制备及压力传感性[J]. 高等学校化学学报, 2017, 38(6): 997. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||