高等学校化学学报 ›› 2019, Vol. 40 ›› Issue (3): 518-527.doi: 10.7503/cjcu20180550
周和根1,2, 金华1, 郭辉瑞1, 林晶2, 章永凡2()
收稿日期:
2019-08-03
出版日期:
2019-01-24
发布日期:
2019-01-24
作者简介:
联系人简介: 章永凡, 男, 博士, 研究员, 博士生导师, 主要从事光学性质与表面催化理论研究. E-mail:
基金资助:
ZHOU Hegen1,2, JIN Hua1, GUO Huirui1, LIN Jing2, ZHANG Yongfan2,*()
Received:
2019-08-03
Online:
2019-01-24
Published:
2019-01-24
Contact:
ZHANG Yongfan
E-mail:zhangyf@fzu.edu.cn
Supported by:
摘要:
采用基于赝势平面波基组的密度泛函理论方法, 对具有黄铜矿结构的6种CuXY2(X=Ga, In; Y=S, Se, Te)晶体的构型、 电子结构、 线性及二阶非线性光学性质进行了研究. 结果表明, 6种CuXY2均为直接带隙半导体, 具有相似的能带结构. 当X原子相同时, 随着Y原子按S→Se→Te依次改变时, 体系的静态介电常数、 静态折射率和静态倍频系数(d36)依次递增. 在占据带中, 位于价带顶附近的能带对体系倍频效应影响最为显著, 该系列化合物的能带主要成分为Cu的3d轨道和Y原子价层p轨道; 对于空能带, 对倍频系数影响较大的是以X原子价层p轨道为主要成分的能带. 6种晶体中, CuInSe2晶体具有较高的光电导率并对太阳光具有较好的吸收性能. 综合考虑体系的双折射率和倍频效应等因素, CuGaS2和CuGaSe2 2种晶体在二阶非线性光学领域具有潜在的应用价值.
中图分类号:
周和根, 金华, 郭辉瑞, 林晶, 章永凡. 黄铜矿型铜基硫属半导体材料的电子结构和光学性质[J]. 高等学校化学学报, 2019, 40(3): 518-527.
ZHOU Hegen,JIN Hua,GUO Huirui,LIN Jing,ZHANG Yongfan. Electronic Structures and Optical Properties of Cu-based Semiconductors with Chalcopyrite-type Structure†[J]. Chemical Journal of Chinese Universities, 2019, 40(3): 518-527.
Crystal | a/nm | c/nm | Volume/nm3 | Eg/eV | Ref. | Scissor/eV | ||||
---|---|---|---|---|---|---|---|---|---|---|
Exp. | Cal. | Exp. | Cal. | Exp. | Cal. | Exp. | Cal. | |||
CuGaS2 | 0.5360 | 0.5368 | 1.0491 | 1.0561 | 0.2995 | 0.3069 | 2.43 | 0.669 | [ | 1.761 |
CuGaSe2 | 0.5614 | 0.5667 | 1.1022 | 1.1258 | 0.3474 | 0.3615 | 1.68 | 0.053 | [ | 1.627 |
CuGaTe2 | 0.6024 | 0.6083 | 1.1940 | 1.2156 | 0.4332 | 0.4498 | 1.24 | 0.225 | [ | 1.015 |
CuInS2 | 0.5523 | 0.5592 | 1.1122 | 1.1243 | 0.3392 | 0.3516 | 1.53 | 0.022 | [ | 1.508 |
CuInSe2 | 0.5782 | 0.5874 | 1.1617 | 1.1786 | 0.3884 | 0.4067 | 1.04 | 0.015 | [ | 1.025 |
CuInTe2 | 0.6194 | 0.6283 | 1.2416 | 1.2621 | 0.4764 | 0.4982 | 1.06 | 0.001 | [ | 1.059 |
Table 1 Experimental and theoretical results of cell parameters and band gaps of CuXY2 crystals
Crystal | a/nm | c/nm | Volume/nm3 | Eg/eV | Ref. | Scissor/eV | ||||
---|---|---|---|---|---|---|---|---|---|---|
Exp. | Cal. | Exp. | Cal. | Exp. | Cal. | Exp. | Cal. | |||
CuGaS2 | 0.5360 | 0.5368 | 1.0491 | 1.0561 | 0.2995 | 0.3069 | 2.43 | 0.669 | [ | 1.761 |
CuGaSe2 | 0.5614 | 0.5667 | 1.1022 | 1.1258 | 0.3474 | 0.3615 | 1.68 | 0.053 | [ | 1.627 |
CuGaTe2 | 0.6024 | 0.6083 | 1.1940 | 1.2156 | 0.4332 | 0.4498 | 1.24 | 0.225 | [ | 1.015 |
CuInS2 | 0.5523 | 0.5592 | 1.1122 | 1.1243 | 0.3392 | 0.3516 | 1.53 | 0.022 | [ | 1.508 |
CuInSe2 | 0.5782 | 0.5874 | 1.1617 | 1.1786 | 0.3884 | 0.4067 | 1.04 | 0.015 | [ | 1.025 |
CuInTe2 | 0.6194 | 0.6283 | 1.2416 | 1.2621 | 0.4764 | 0.4982 | 1.06 | 0.001 | [ | 1.059 |
Fig.3 Total and partial density of states(DOSs) of CuGaTe2(A1—A4) and CuInTe2(B1—B4) crystals (A1, B1) Total; (A2, B2) Cu; (A3) Ga; (B3) In; (A4, B4) Te. The zero energy is set to Fermi level(EF).
Fig.4 Variations of the real part(A)—(F) and imaginary part(G)—(L) of dielectric function of CuXY2 crystals(A, G) CuGaS2; (B, H) CuGaSe2; (C, I) CuGaTe2; (D, J) CuInS2; (E, K) CuInSe2; (F, L) CuInTe2.
Fig.6 Variations of reflectivity of CuGaS2(A), CuGaSe2(B) and CuGaTe2(C) crystals Rx and Rz are the reflectivity along x and z directions, respectively.
Fig.7 Variations of real part of photoconductivity of CuGaS2(A), CuGaSe2(B), CuGaTe2(C), CuInS2(D), CuInSe2(E) and CuInTe2(F) crystalsσx and σz are the photoconductivity along x and z directions, respectively.
Crystal | Refractive index at zero frequency | d36/(pm·V-1) at wavelength of 10.6 μm | ||||
---|---|---|---|---|---|---|
This work | Other works | Exp. | This work | Other works | Exp. | |
CuGaS2 | 2.70 | 2.77[ | 2.5—3.05[ | 13.06 | 11.35[ | 14.5±15%[ |
2.62[ | 2.2—2.9[ | |||||
CuGaSe2 | 2.93 | 3.69[ | 2.34—3.38[ | 28.74 | 27.75[ | 30.0±10%[ |
2.82[ | ||||||
CuGaTe2 | 3.35 | 4.99[ | | 114.87 | 70.00[ | |
CuInS2 | 2.98 | 3.22[ | 2.38—2.82[ | 17.87 | 15.85[ | 10.6±15%[ |
2.76[ | 1.6—3[ | |||||
CuInSe2 | 3.32 | 3.54[ | 2.04—3.12[ | 60.16 | 36.25[ | |
3.10[ | ||||||
CuInTe2 | 3.76 | 4.98[ | | 82.02 | 63.00[ | |
3.05[ |
Table 2 Experimental and theoretical values of refractive index and d36 of CuXY2 crystals
Crystal | Refractive index at zero frequency | d36/(pm·V-1) at wavelength of 10.6 μm | ||||
---|---|---|---|---|---|---|
This work | Other works | Exp. | This work | Other works | Exp. | |
CuGaS2 | 2.70 | 2.77[ | 2.5—3.05[ | 13.06 | 11.35[ | 14.5±15%[ |
2.62[ | 2.2—2.9[ | |||||
CuGaSe2 | 2.93 | 3.69[ | 2.34—3.38[ | 28.74 | 27.75[ | 30.0±10%[ |
2.82[ | ||||||
CuGaTe2 | 3.35 | 4.99[ | | 114.87 | 70.00[ | |
CuInS2 | 2.98 | 3.22[ | 2.38—2.82[ | 17.87 | 15.85[ | 10.6±15%[ |
2.76[ | 1.6—3[ | |||||
CuInSe2 | 3.32 | 3.54[ | 2.04—3.12[ | 60.16 | 36.25[ | |
3.10[ | ||||||
CuInTe2 | 3.76 | 4.98[ | | 82.02 | 63.00[ | |
3.05[ |
Fig.8 Variations of d36 coefficient as a function of the numbers of occupied bands of CuGaS2(a) and CuInS2(b)(A), CuGaSe2(a) and CuInSe2(b)(B), CuGaTe2(a) and CuInTe2(b)(C) crystalsThe index of HOCO is 26, and the d36 magnitude is obtained by considering a total of 34 unoccupied energy bands.
Fig.10 Correlations between d36 coefficients and the occupied(A1—A4)/ unoccupied(B1—B4) DOSs of CuGaS2 crystals(A1, B1) Cu; (A2, B2) Ga; (A3, B3) S; (A4, B4) d36. The zero energy is set to EF, and the d36 magnitude at a certain energy level(E) is obtained by considering all the occupied/unoccupied bands distributed in the region between E and EF.
Fig.11 Variations of d36 coefficient as a function of the numbers of unoccupied bands of CuXY2The index of the LUCO is 27, and the d36 magnitude is obtained by considering a total of 26 occupied energy bands.
Fig.12 3D charge density maps of unoccupied bands from the 32nd to 36th of CuGaY2(A) CuGaS2; (B) CuGaSe2; (C) CuGaTe2. The corresponding isovalue is 6.0 e/nm3.
Fig.13 Frequency-dependent variations of the d36 coefficients of CuGaY2(A) and CuInY2(B) crystals (A) a. CuGaS2; b. CuGaSe2; c. CuGaTe2. (B) a. CuInS2; b. CuInSe2; c. CuInTe2.
[1] | Verozubova G. A., Gribenyukov A. I., Korotkova V. V., Semchinova O., Uffmann D., J. Cryst. Growth, 2000, 213, 334—339 |
[2] | Bai L., Lin Z.S.., Wang Z. Z., Chen C. T., Lee M. H.,J. Chem. Phys., 2004, 120, 8772—8778 |
[3] | Chen C. T., Bai L., Wang Z. Z., Li R. K., J. Cryst. Growth, 2006, 292, 169—17 |
[4] | Shimizu A., Chaisitsak S., Sugiyama T., Yamada A., Konagai M., Thin Solid Films, 2000, 361, 193—197 |
[5] | Mitchell K. W., Eberspacher C., Ermer J. H., Pauls K. L., Pier D. N., Ieee Transactions on Electron Devices, 1990, 37, 410—417 |
[6] | Hwang H. L., Chang H. H., Sharma P., Letha A. J., Shao L. X., Zhang Y. F., Tseng B. H., Adv. Sci., 2016, 3, 1500196 |
[7] | Aissaoui O., Mehdaoui S., Bechiri L., Benabdeslem M., Benslim N., Amara A., Mahdjoubi L., Nouet G., J. Phys. D-Appl. Phys., 2007, 40, 5663—5665 |
[8] | Zhu S. F., Zhao B. J., Liu J., Li Z. H., Li W. T., Mater. Chem. Phys., 1997, 50, 94—97 |
[9] | Singh N.B.., Hopkins R. H., Feichtner J. D.,J. Mater. Sci., 1986, 21, 837—841 |
[10] | Badikov V. V., Laptev V. B., Panyutin V. L., Ryabov E. A., Shevyrdyaeva G. S., Shcherbina O. B., Kvantovaya Elektron, 1992, 19, 782—784 |
[11] | Verma A. S., Physica Status Solidi B-Basic Solid State Physics, 2009, 246, 345—353 |
[12] | Arai S., Ozaki S., Adachi S., Appl. Optics., 2010, 49, 829—837 |
[13] | Ouahrani T., Otero-de-la-Roza A., Reshak A. H., Khenata R., Faraoun H. I., Amrani B., Mebrouki M., Luana V., Phys. B, 2010, 405, 3658—3664 |
[14] | Chen S. Y., Gong X. G., Wei S. H., Phys. Rev. B, 2007, 75, 205209 |
[15] | Rashkeev S. N., Lambrecht W. R. L., Phys. Rev. B, 2001, 63, 165212 |
[16] | Ghosh A., Thangavel R., Rajagopalan M., J. Mater. Sci., 2015, 50, 1710—1717 |
[17] | Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C., Phys. Rev. B, 1992, 46, 6671—6687 |
[18] | Liang D. M., Leng X., Ma Y. C., Chem. Res. Chinese Universities, 2016, 32(6), 996—1004 |
[19] | Yan L. L., Liu C. G., Jiang M. X., Chem. J. Chinese Universities, 2019, 39(5), 1034—1040 |
(严玲玲, 刘春光, 蒋梦绪. 高等学校化学学报, 2019, 39(5), 1034—1040) | |
[20] | Xiao H., Tahir-Kheli J., Goddard W. A., J. Phys. Chem. Lett., 2011, 2, 212—217 |
[21] | Rashkeev S. N., Lambrecht W. R. L., Segall B., Phys. Rev. B, 1998, 57, 3905—3919 |
[22] | Ni B. L., Zhou H. G., Jiang J. Q., Li Y., Zhang Y. F., Acta Phys. Chim. Sin., 2010, 26, 3052—3260 |
(倪碧莲, 周和根, 姜俊全, 李奕, 章永凡. 物理化学学报, 2010, 26, 3052—3060) | |
[23] | Chen D., Xiao H. Y., Jia W., Chen H., Zhou H. G., Li Y., Ding K. N., Zhang Y. F., Acta Phys. Sin., 2012, 61, 127103 |
(陈懂, 肖河阳, 加伟, 陈虹, 周和根, 李奕, 丁开宁, 章永凡. 物理学报, 2012, 61, 127103) | |
[24] | Fang Z. X., Lin J., Liu R., Liu P., Li Y., Huang X., Ding K. N., Ning L. X., Zhang Y. F., Cryst. Eng. Comm., 2014, 16, 10569—10580 |
[25] | Godby R. W., Schluter M., Sham L. J., Phys. Rev. B, 1988, 37, 10159—10175 |
[26] | Kresse G., Furthmuller J., Comp. Mater. Sci., 1996, 6, 15—50 |
[27] | Kresse G., Furthmuller J., Phys. Rev. B, 1996, 54, 11169—11186 |
[28] | Huang Y.Z.., Wu L. M., Wu X. T., Li L. H., Chen L., Zhang Y. F.,J. Am. Chem. Soc., 2010, 132, 12788—12789 |
[29] | Lin J., Fang Z. X., Tao H. L., Li Y., Huang X., Ding K. N., Huang S. P., Zhang Y. F., Cryst. Eng. Comm., 2019, 20, 2573—2582 |
[30] | Zhou H. G., Wen X. W., Fang Z. X., Li Y., Ding K. N., Huang X., Zhang Y. F., Acta Phys. Chim. Sin., 2013, 29(5), 920—928 |
(周和根, 温兴伟, 方振兴, 李奕, 丁开宁, 黄昕, 章永凡. 物理化学学报, 2013, 29(5), 920—928) | |
[31] | Mandel L., Tomlinson R.D.., Hampshire M. J.,J. Appl. Crystallogr., 1973, 10, 130—131 |
[32] | Leon M., Merino J. M., Devidales J. L. M., Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1993, 11, 2430—2436 |
[33] | Hussain K. M. A., Podder J., Saha D. K., Ichimura M., Indian J. Pure Ap. Phy., 2012, 50, 117—122 |
[34] | Gladkikh L. I., Rogacheva E. I., Tavrina T. V., Fomina L. P., Inorg. Mater., 2000, 36, 1098—1100 |
[35] | Knight K. S., Mater. Res. Bull., 1992, 27, 161—167 |
[36] | Nayebi P., Mirabbaszadeh K., Shamshirsaz M., Phys. B, 2013, 416, 55—63 |
[37] | Davis J.G.., Bridenbaugh P. M., Wagner S.,J. Electro. Mater., 1978, 7, 39—45 |
[38] | Alonso M. I., Wakita K., Pascual J., Garriga M., Yamamoto N., Phys. Rev. B, 2001, 63, 075203 |
[39] | Levcenko S., Syrbu N. N., Tezlevan V. E., Arushanov E., Doka-Yamigno S., Schedel-Niedrig T., Lux-Steiner M. C., J. Phys. Condens. Matter, 2007, 19, 456222 |
[40] | WeberJ. M., Handbook of Optical Materials, CRC Press, Boca Raton, 2003, 218 |
[1] | 史海涵,吴香萍,彭辛哲,余国静,董朝阳,纪瑶瑶,杨思文,陈俊林,王锦,冉雪芹,杨磊,解令海,黄维. 一种基于风车格结构的有效降低内重组能的咔唑类格子化分子[J]. 高等学校化学学报, 2020, 41(7): 1670-1676. |
[2] | 贺进禄, 龙闰, 方维海. 非绝热分子动力学模拟A位阳离子对钙钛矿热载流子弛豫的影响[J]. 高等学校化学学报, 2020, 41(3): 439-446. |
[3] | 曹洪玉,马子辉,张文琼,唐乾,李如玉,郑学仿. 单、 双及双混氮杂卟啉的结构和电子吸收光谱[J]. 高等学校化学学报, 2020, 41(2): 341-348. |
[4] | 张林, 张尉, 岳鑫, 李鹏杰, 杨作银, 蒲敏, 雷鸣. 锰配合物催化CO2加氢生成甲酸的理论研究[J]. 高等学校化学学报, 2019, 40(9): 1911-1917. |
[5] | 魏馨, 邓要亮, 郑旭明, 赵彦英. 2-氨基苯并噻唑的结构及激发态质子转移动力学[J]. 高等学校化学学报, 2019, 40(8): 1679-1685. |
[6] | 曹培明, 尤静林, 周灿栋, LU Liming, 王建, 王敏, 丁雅妮, 徐琰东. CaF2-Al2O3-MgO电渣微结构的原位拉曼光谱及27Al魔角旋转核磁共振研究[J]. 高等学校化学学报, 2019, 40(6): 1242-1248. |
[7] | 刘秋娜, 许文文, 刘茂祝, 王惠钢, 郑旭明. 高分辨偏正拉曼光谱对丙酸酐C=O振动模的拉曼光谱非一致效应研究[J]. 高等学校化学学报, 2019, 40(5): 932-939. |
[8] | 程文敏, 夏文生, 万惠霖. 氧化镧表面反应性对甲烷和氧分子活化的影响[J]. 高等学校化学学报, 2019, 40(5): 940-949. |
[9] | 康慧敏, 王洪强, 王慧莹, 吴黎歆, 仇永清. 卟啉-碳硼烷-硼亚甲基二吡咯三元化合物二阶非线性光学性质的理论研究[J]. 高等学校化学学报, 2019, 40(5): 965-972. |
[10] | 郅莎莎, 班颖, 徐志广, 许旋. 金属串配合物[MM'M″(dpa)4(Cl)2](M=Co, Ni; M',M″=Co, Rh)电子输运的理论研究[J]. 高等学校化学学报, 2019, 40(5): 980-987. |
[11] | 孙国栋, 王雪, 江国亮, 徐之勇, 刘洪梅. 二维金属-六亚氨基苯框架材料的气体吸附效应[J]. 高等学校化学学报, 2019, 40(5): 995-1004. |
[12] | 张晓英, 杜桂芳, 朱博, 关威. 镍催化氮杂环丁酮和丁二烯环加成反应机制的理论研究[J]. 高等学校化学学报, 2019, 40(4): 770-776. |
[13] | 周晓锋, 周彦冰, 唐春梅. 碱土金属Mg外掺杂硼笼B40Mg6的储氢性能[J]. 高等学校化学学报, 2019, 40(3): 473-480. |
[14] | 张兆燕,陈宏善. Al6ONa2组装Zintl相晶体的理论研究[J]. 高等学校化学学报, 2019, 40(11): 2354-2359. |
[15] | 杨秀荣,张驰,高红旭,赵凤起,牛诗尧,郭兆琦,马海霞. NO与NO2在ZnO表面吸附的密度泛函理论研究[J]. 高等学校化学学报, 2019, 40(10): 2121-2127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||