高等学校化学学报 ›› 2018, Vol. 39 ›› Issue (9): 1976-1984.doi: 10.7503/cjcu20180218
收稿日期:
2018-03-19
出版日期:
2018-07-30
发布日期:
2018-07-30
作者简介:
联系人简介: 王怀谦, 男, 博士, 副教授, 主要从事纳米团簇与光电子能谱研究. E-mail:
基金资助:
JIANG Xianming, WANG Huaiqian*(), CAO Yu, SUN Zhihui, CAO Yufang, WU Weibin
Received:
2018-03-19
Online:
2018-07-30
Published:
2018-07-30
Contact:
WANG Huaiqian
E-mail:hqwang@hqu.edu.cn
Supported by:
摘要:
采用随机踢球模型结合密度泛函理论, 在PBEPBE/RE/SDD/Si/6-311+G(d)水平下研究了中性和阴性的硅基稀土掺杂团簇MS
中图分类号:
蒋贤明, 王怀谦, 曹宇, 孙之惠, 曹玉芳, 吴伟宾. 硅基稀土掺杂团簇MS
JIANG Xianming,WANG Huaiqian,CAO Yu,SUN Zhihui,CAO Yufang,WU Weibin. Structure Prediction and Photoelectron Spectroscopy Study of Rare Earth-doped Silicon-based Clusters of MS
Cluster | Isomer | SM | Sym | Eb/eV | Ed/eV | Egap/eV |
---|---|---|---|---|---|---|
Si7 | Ⅰ | 1 | D5h | 3.56 | — | 2.16 |
S | Ⅰ | 2 | D5h | 3.65 | — | 0.59 |
Si8 | Ⅴ | 1 | C2v | 3.45 | — | 1.11 |
S | Ⅴ | 2 | Td | 3.64 | — | 0.46 |
EuSi7 | c | 8 | C1 | 3.32 | 1.65 | 1.13 |
EuS | a | 9 | Cs | 3.51 | 2.51 | 0.25 |
SmSi7 | c | 7 | C1 | 3.36 | 1.97 | 0.40 |
SmS | a | 6 | Cs | 3.56 | 2.94 | 0.30 |
YbSi7 | c | 1 | C1 | 3.20 | 2.25 | 0.90 |
YbS | a | 2 | Cs | 3.47 | 2.20 | 0.36 |
Table 1 Symmetry type(Sym), spin multiplicity(SM), binding energy(Eb) per atom, doping energy(Ed) per atom and HOMO-LUMO energy gap(Egap) of the lowest-energy structures of both pure Sinq(n=7,8; q=0, -1) clusters and RE-doped MSiq7(M=Eu, Sm, Yb; q=0, -1) clusters
Cluster | Isomer | SM | Sym | Eb/eV | Ed/eV | Egap/eV |
---|---|---|---|---|---|---|
Si7 | Ⅰ | 1 | D5h | 3.56 | — | 2.16 |
S | Ⅰ | 2 | D5h | 3.65 | — | 0.59 |
Si8 | Ⅴ | 1 | C2v | 3.45 | — | 1.11 |
S | Ⅴ | 2 | Td | 3.64 | — | 0.46 |
EuSi7 | c | 8 | C1 | 3.32 | 1.65 | 1.13 |
EuS | a | 9 | Cs | 3.51 | 2.51 | 0.25 |
SmSi7 | c | 7 | C1 | 3.36 | 1.97 | 0.40 |
SmS | a | 6 | Cs | 3.56 | 2.94 | 0.30 |
YbSi7 | c | 1 | C1 | 3.20 | 2.25 | 0.90 |
YbS | a | 2 | Cs | 3.47 | 2.20 | 0.36 |
Cluster | Isomer | Calculated | Experimental[ | ||
---|---|---|---|---|---|
ADE | VDE | ADE | VDE | ||
a | 1.62 | 1.98 | 1.69±0.1 | 1.88 | |
b | 1.62 | 2.01 | |||
c | 1.20 | 1.57 | |||
d | 1.41 | 1.96 | |||
SmS | a | 1.64 | 1.97 | 1.66±0.1 | 1.88 |
b | 1.60 | 1.95 | |||
d | 1.72 | 2.03 | |||
c | 1.21 | 1.69 | |||
YbS | a | 1.75 | 1.98 | 1.88±0.1 | 2.03 |
c | 1.45 | 1.95 | |||
d | 1.65 | 2.01 | |||
b | 1.80 | 2.07 | |||
e | 1.89 | 2.25 | |||
f | 2.03 | 2.26 |
Table 2 Experimentally measured adiabatic and vertical detachment energies(ADEs and VDEs) from the photoelectron spectra compared to the calculated ground state or low-lying anion state ADEs and VDEs of RE-doped MSiq7(M=Eu, Sm, Yb; q=0, -1) clusters
Cluster | Isomer | Calculated | Experimental[ | ||
---|---|---|---|---|---|
ADE | VDE | ADE | VDE | ||
a | 1.62 | 1.98 | 1.69±0.1 | 1.88 | |
b | 1.62 | 2.01 | |||
c | 1.20 | 1.57 | |||
d | 1.41 | 1.96 | |||
SmS | a | 1.64 | 1.97 | 1.66±0.1 | 1.88 |
b | 1.60 | 1.95 | |||
d | 1.72 | 2.03 | |||
c | 1.21 | 1.69 | |||
YbS | a | 1.75 | 1.98 | 1.88±0.1 | 2.03 |
c | 1.45 | 1.95 | |||
d | 1.65 | 2.01 | |||
b | 1.80 | 2.07 | |||
e | 1.89 | 2.25 | |||
f | 2.03 | 2.26 |
Cluster | Isomer | Sym | ΔE/eV | Cluster | Isomer | Sym | ΔE/eV | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
PBEPBE | B3LYP | BPW91 | PBEPBE | B3LYP | BPW91 | ||||||
EuSi7 | c | C1 | 0 | 0 | 0 | EuS | a | Cs | 0 | 0.14 | 0 |
d | Cs | 0.33 | 0.28 | 0.32 | b | Cs | 0.05 | 0 | 0.01 | ||
a | Cs | 0.36 | 0.42 | 0.37 | c | C1 | 0.06 | 0.02 | 0.03 | ||
b | Cs | 0.41 | 0.31 | 0.38 | d | Cs | 0.12 | 0.24 | 0.10 | ||
g | Cs | 0.65 | 0.94 | 0.64 | e | C2v | 0.30 | 0.41 | 0.29 | ||
f | C3v | 0.74 | 0.61 | 0.70 | f | C3v | 0.32 | 0.46 | 0.28 | ||
e | C2v | 0.78 | 0.87 | 0.78 | g | Cs | 0.44 | 0.59 | 0.42 | ||
h | Cs | 1.44 | 1.00 | 1.03 | h | Cs | 0.46 | 0.44 | 0.42 | ||
k | Cs | 1.45 | 1.34 | 1.39 | i | Cs | 1.07 | 1.19 | 1.05 | ||
Cluster | Isomer | Sym | ΔE/eV | Cluster | Isomer | Sym | ΔE/eV | ||||
PBEPBE | B3LYP | BPW91 | PBEPBE | B3LYP | BPW91 | ||||||
i | Cs | 1.90 | 0.82 | 1.87 | j | Cs | 1.15 | 0.96 | 1.07 | ||
j | Cs | 1.93 | 1.69 | 1.86 | k | Cs | 1.24 | 1.20 | 1.16 | ||
l | Cs | 2.39 | 2.07 | 2.28 | l | Cs | 2.20 | 1.67 | 1.98 | ||
SmSi7 | c | C1 | 0 | 0 | 0 | SmS | a | Cs | 0 | 0.09 | 0 |
a | Cs | 0.28 | 0.30 | 0.23 | b | Cs | 0.10 | 0.81 | 0.01 | ||
d | Cs | 0.28 | 0.27 | 0.20 | d | Cs | 0.15 | 0.08 | 0.14 | ||
b | Cs | 0.34 | 0.23 | 0.15 | c | C1 | 0.27 | 0 | 0.25 | ||
g | Cs | 0.61 | 0.52 | 0.40 | g | Cs | 0.40 | 0.41 | 0.39 | ||
f | C3v | 0.64 | 0.49 | 0.66 | f | C3v | 0.49 | 0.27 | 0.40 | ||
j | Cs | 0.68 | 1.66 | 1.30 | e | C2v | 1.14 | 1.07 | 1.09 | ||
e | C2v | 0.77 | 0.89 | 0.85 | k | Cs | 1.31 | 1.53 | 1.61 | ||
k | Cs | 1.50 | 1.85 | 1.92 | h | Cs | 1.40 | 1.25 | 1.34 | ||
i | C3v | 1.71 | 1.77 | 1.83 | j | Cs | 1.75 | 1.88 | 1.67 | ||
h | Cs | 2.38 | 1.93 | 1.67 | i | C3v | 1.77 | 1.68 | 1.72 | ||
l | Cs | 2.61 | 2.55 | 2.34 | l | Cs | 1.81 | 1.34 | 1.78 | ||
YbSi7 | c | C1 | 0 | 0 | 0 | YbS | a | Cs | 0 | 0.13 | 0 |
d | Cs | 0.22 | 0.03 | 0.02 | c | Cs | 0.02 | 0.06 | 0 | ||
a | Cs | 0.29 | 0.09 | 0.10 | d | Cs | 0.04 | 0.14 | 0.03 | ||
b | Cs | 0.40 | 0.21 | 0.18 | b | Cs | 0.07 | 0 | 0.02 | ||
g | Cs | 0.66 | 0.46 | 0.45 | e | C2v | 0.29 | 0.39 | 0.27 | ||
e | C2v | 0.71 | 0.51 | 0.51 | f | C3v | 0.29 | 0.16 | 0.24 | ||
f | C3v | 0.85 | 0.66 | 0.61 | i | C2v | 0.31 | 0.50 | 0.30 | ||
i | C2v | 0.96 | 0.76 | 0.76 | h | Cs | 0.41 | 0.37 | 0.36 | ||
h | Cs | 0.99 | 0.79 | 0.76 | g | Cs | 0.43 | 0.56 | 0.41 | ||
k | Cs | 1.53 | 1.33 | 1.27 | j | Cs | 1.13 | 0.90 | 1.04 | ||
j | Cs | 1.90 | 1.70 | 1.64 | k | Cs | 1.25 | 1.19 | 1.18 | ||
l | Cs | 2.40 | 2.24 | 2.19 | l | Cs | 1.66 | 1.26 | 1.31 |
Table 3 Relative energies for selected low-lying isomers of MSiq7(M=Eu, Sm, Yb; q=0, -1) with different density functional methods
Cluster | Isomer | Sym | ΔE/eV | Cluster | Isomer | Sym | ΔE/eV | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
PBEPBE | B3LYP | BPW91 | PBEPBE | B3LYP | BPW91 | ||||||
EuSi7 | c | C1 | 0 | 0 | 0 | EuS | a | Cs | 0 | 0.14 | 0 |
d | Cs | 0.33 | 0.28 | 0.32 | b | Cs | 0.05 | 0 | 0.01 | ||
a | Cs | 0.36 | 0.42 | 0.37 | c | C1 | 0.06 | 0.02 | 0.03 | ||
b | Cs | 0.41 | 0.31 | 0.38 | d | Cs | 0.12 | 0.24 | 0.10 | ||
g | Cs | 0.65 | 0.94 | 0.64 | e | C2v | 0.30 | 0.41 | 0.29 | ||
f | C3v | 0.74 | 0.61 | 0.70 | f | C3v | 0.32 | 0.46 | 0.28 | ||
e | C2v | 0.78 | 0.87 | 0.78 | g | Cs | 0.44 | 0.59 | 0.42 | ||
h | Cs | 1.44 | 1.00 | 1.03 | h | Cs | 0.46 | 0.44 | 0.42 | ||
k | Cs | 1.45 | 1.34 | 1.39 | i | Cs | 1.07 | 1.19 | 1.05 | ||
Cluster | Isomer | Sym | ΔE/eV | Cluster | Isomer | Sym | ΔE/eV | ||||
PBEPBE | B3LYP | BPW91 | PBEPBE | B3LYP | BPW91 | ||||||
i | Cs | 1.90 | 0.82 | 1.87 | j | Cs | 1.15 | 0.96 | 1.07 | ||
j | Cs | 1.93 | 1.69 | 1.86 | k | Cs | 1.24 | 1.20 | 1.16 | ||
l | Cs | 2.39 | 2.07 | 2.28 | l | Cs | 2.20 | 1.67 | 1.98 | ||
SmSi7 | c | C1 | 0 | 0 | 0 | SmS | a | Cs | 0 | 0.09 | 0 |
a | Cs | 0.28 | 0.30 | 0.23 | b | Cs | 0.10 | 0.81 | 0.01 | ||
d | Cs | 0.28 | 0.27 | 0.20 | d | Cs | 0.15 | 0.08 | 0.14 | ||
b | Cs | 0.34 | 0.23 | 0.15 | c | C1 | 0.27 | 0 | 0.25 | ||
g | Cs | 0.61 | 0.52 | 0.40 | g | Cs | 0.40 | 0.41 | 0.39 | ||
f | C3v | 0.64 | 0.49 | 0.66 | f | C3v | 0.49 | 0.27 | 0.40 | ||
j | Cs | 0.68 | 1.66 | 1.30 | e | C2v | 1.14 | 1.07 | 1.09 | ||
e | C2v | 0.77 | 0.89 | 0.85 | k | Cs | 1.31 | 1.53 | 1.61 | ||
k | Cs | 1.50 | 1.85 | 1.92 | h | Cs | 1.40 | 1.25 | 1.34 | ||
i | C3v | 1.71 | 1.77 | 1.83 | j | Cs | 1.75 | 1.88 | 1.67 | ||
h | Cs | 2.38 | 1.93 | 1.67 | i | C3v | 1.77 | 1.68 | 1.72 | ||
l | Cs | 2.61 | 2.55 | 2.34 | l | Cs | 1.81 | 1.34 | 1.78 | ||
YbSi7 | c | C1 | 0 | 0 | 0 | YbS | a | Cs | 0 | 0.13 | 0 |
d | Cs | 0.22 | 0.03 | 0.02 | c | Cs | 0.02 | 0.06 | 0 | ||
a | Cs | 0.29 | 0.09 | 0.10 | d | Cs | 0.04 | 0.14 | 0.03 | ||
b | Cs | 0.40 | 0.21 | 0.18 | b | Cs | 0.07 | 0 | 0.02 | ||
g | Cs | 0.66 | 0.46 | 0.45 | e | C2v | 0.29 | 0.39 | 0.27 | ||
e | C2v | 0.71 | 0.51 | 0.51 | f | C3v | 0.29 | 0.16 | 0.24 | ||
f | C3v | 0.85 | 0.66 | 0.61 | i | C2v | 0.31 | 0.50 | 0.30 | ||
i | C2v | 0.96 | 0.76 | 0.76 | h | Cs | 0.41 | 0.37 | 0.36 | ||
h | Cs | 0.99 | 0.79 | 0.76 | g | Cs | 0.43 | 0.56 | 0.41 | ||
k | Cs | 1.53 | 1.33 | 1.27 | j | Cs | 1.13 | 0.90 | 1.04 | ||
j | Cs | 1.90 | 1.70 | 1.64 | k | Cs | 1.25 | 1.19 | 1.18 | ||
l | Cs | 2.40 | 2.24 | 2.19 | l | Cs | 1.66 | 1.26 | 1.31 |
Fig.1 Structures of the lower-lying isomers for pure Siq7/8(q=0, -1) clusters(Ⅰ—Ⅳ for Siq7; Ⅴ—Ⅹ for Siq8) and RE-doped MSiq7(M=Eu, Sm, Yb; q=0, -1) clusters(a—l) at the PBEPBE/RE/SDD/Si/6-311+G(d) level of theoryThe dark gray spheres stand for silicon atoms and the cyan ones for RE atoms.
Fig.2 Relative energies and simulated photoelectron spectra for the lowest-lying isomers of MSi7-[M=Eu(A1—A4), Sm(B1—B4), Yb(C1—C4)] clusters (A1), (B1), (C1) Isomer a; (A2), (B2), (C4) isomer b; (A3), (B4), (C2) isomer c; (A4), (B3), (C3) isomer d.
Cluster | Isomer | State | RE | Si-1 | Si-2 | Si-3 | Si-4 | Si-5 | Si-6 | Si-7 |
---|---|---|---|---|---|---|---|---|---|---|
EuSi7 | c | 8A | 0.96 | -0.05 | -0.24 | -0.46 | 0.08 | 0.03 | -0.26 | -0.05 |
a | 9A | 0.44 | 0.03 | -0.37 | -0.17 | -0.30 | -0.17 | -0.30 | -0.16 | |
SmSi7 | c | 7A | 0.95 | -0.05 | -0.24 | -0.45 | 0.08 | 0.03 | -0.26 | -0.06 |
SmS | a | 6A | 0.38 | 0.03 | -0.34 | -0.19 | -0.28 | -0.20 | -0.28 | -0.12 |
YbSi7 | c | 1A | 0.88 | -0.04 | -0.24 | -0.46 | 0.11 | 0.04 | -0.23 | -0.06 |
YbS | a | 2A" | 0.37 | 0.04 | -0.28 | -0.38 | -0.17 | -0.13 | -0.17 | -0.28 |
Table 4 Population of the natural charges and the electronic state of the lowest-energy RE-doped MSiq7(M=Eu, Sm, Yb; q=0, -1) clusters
Cluster | Isomer | State | RE | Si-1 | Si-2 | Si-3 | Si-4 | Si-5 | Si-6 | Si-7 |
---|---|---|---|---|---|---|---|---|---|---|
EuSi7 | c | 8A | 0.96 | -0.05 | -0.24 | -0.46 | 0.08 | 0.03 | -0.26 | -0.05 |
a | 9A | 0.44 | 0.03 | -0.37 | -0.17 | -0.30 | -0.17 | -0.30 | -0.16 | |
SmSi7 | c | 7A | 0.95 | -0.05 | -0.24 | -0.45 | 0.08 | 0.03 | -0.26 | -0.06 |
SmS | a | 6A | 0.38 | 0.03 | -0.34 | -0.19 | -0.28 | -0.20 | -0.28 | -0.12 |
YbSi7 | c | 1A | 0.88 | -0.04 | -0.24 | -0.46 | 0.11 | 0.04 | -0.23 | -0.06 |
YbS | a | 2A" | 0.37 | 0.04 | -0.28 | -0.38 | -0.17 | -0.13 | -0.17 | -0.28 |
Cluster | Valence electron configuration | RE Moment/μB | Molecule/μB | ||||||
---|---|---|---|---|---|---|---|---|---|
Charge/e | 6s | 4f | 5d | 6p | 6d | Total | |||
EuSi7 | 6s0.394f6.975d0.606p0.096d0.01 | 0.96 | 0.04 | 6.95 | 0.08 | 0.01 | 0.01 | 7.09 | 7 |
EuS | 6s0.474f6.925d1.026p0.196d0.01 | 0.44 | 0.05 | 6.90 | 0.28 | 0.02 | 0 | 7.25 | 8 |
SmSi7 | 6s0.384f5.965d0.656p0.096d0.01 | 0.95 | 0.03 | 5.94 | 0.08 | 0 | 0.01 | 6.06 | 6 |
SmS | 6s0.484f5.785d1.206p0.196d0.01 | 0.38 | 0.03 | 5.74 | -0.02 | 0 | 0 | 5.75 | 5 |
YbSi7 | 6s0.554f13.945d0.486p0.156d0.01 | 0.88 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
YbS | 6s0.604f13.855d0.886p0.316d0.02 | 0.37 | 0 | 0.08 | 0.12 | 0.01 | 0 | 0.21 | 1 |
Table 5 Natural electron configuration, charge, magnetic moment of 6s, 4f, 5d, 6p and 6d states of M atom with M = Eu, Sm, Yb, along with total magnetic moment of the ground state structure of MSiq7(M=Eu, Sm, Yb; q=0, -1) clusters
Cluster | Valence electron configuration | RE Moment/μB | Molecule/μB | ||||||
---|---|---|---|---|---|---|---|---|---|
Charge/e | 6s | 4f | 5d | 6p | 6d | Total | |||
EuSi7 | 6s0.394f6.975d0.606p0.096d0.01 | 0.96 | 0.04 | 6.95 | 0.08 | 0.01 | 0.01 | 7.09 | 7 |
EuS | 6s0.474f6.925d1.026p0.196d0.01 | 0.44 | 0.05 | 6.90 | 0.28 | 0.02 | 0 | 7.25 | 8 |
SmSi7 | 6s0.384f5.965d0.656p0.096d0.01 | 0.95 | 0.03 | 5.94 | 0.08 | 0 | 0.01 | 6.06 | 6 |
SmS | 6s0.484f5.785d1.206p0.196d0.01 | 0.38 | 0.03 | 5.74 | -0.02 | 0 | 0 | 5.75 | 5 |
YbSi7 | 6s0.554f13.945d0.486p0.156d0.01 | 0.88 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
YbS | 6s0.604f13.855d0.886p0.316d0.02 | 0.37 | 0 | 0.08 | 0.12 | 0.01 | 0 | 0.21 | 1 |
[1] | Jing Q., Ge G. X., Cao H. B., Huang X. C., Liu X. Y., Yan H. X., Acta Phys. -Chim. Sin., 2010, 26(9), 2510—2514 |
(井群, 葛桂贤, 曹海宾, 黄旭初, 刘效勇, 闫红霞. 物理化学学报, 2010, 26(9), 2510—2514) | |
[2] | Chen L., Xu C., Zhang X. F., Acta Phys. Sin., 2009, 58(3), 1603—1607 |
(陈亮, 徐灿, 张小芳. 物理学报, 2009, 58(3), 1603—1607) | |
[3] | Lu Z. H., Cao J. X., Chin. Phys. B, 2008, 17(9), 3336—3342 |
[4] | Zhang C. R., Chen Y. H., Wang D. B., Wu Y. Z., Chen H. S., Chin. Phys. B, 2008, 17(8), 2938—2950 |
[5] | Tekin A., Hartke B., Phys. Chem. Chem. Phys ., 2004, 6, 503—509 |
[6] | Wales D. J., Waterworth M. C., J. Chem. Soc. Faraday Trans., 1992, 88(23), 3409—3417 |
[7] | Lyon J. T., Gruene P., Fielicke A., Meijer G., Janssens E., Claes P., Lievens P., J. Am. Chem. Soc., 2009, 131, 1115—1121 |
[8] | Hiura H., Miyazaki T., Kanayama T., Phys. Rev. Lett., 2001, 86, 1733—1736 |
[9] | Kumar V., Comput. Mater. Sci., 2006, 36, 1—11 |
[10] | Koyasu K., Atobe J., Furuse S., Nakajima A., J. Chem. Phys., 2008, 129, 214301 |
[11] | Kumar V., Kawazoe Y., Phys. Rev. Lett., 2001, 87, 045503 |
[12] | Kumar V., Eur. Phys. J. D, 2003, 24, 227—232 |
[13] | Kumar V., Comput. Mater. Sci., 2004, 30, 260—268 |
[14] | Beck S. M., J. Chem. Phys., 1989, 90, 6306—6312 |
[15] | Ohara M., Koyasu K., Nakajima A., Kaya K., Chem. Phys. Lett., 2003, 371, 490—497 |
[16] | Ohara M., Miyajima K., Pramann A., Nakajima A., Kaya K., J. Phys. Chem. A, 2002, 106, 3702—3705 |
[17] | Manzoor D., Krishnamurty S., Pal S., J. Phys. Chem. C, 2014, 118, 7501—7507 |
[18] | Kumar V., Briere T., Kawazoe Y., Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 68, 1—9 |
[19] | Hang T. D., Nguyen H. T., Nguyen M. T., J. Phys. Chem. C, 2016, 120, 10442—10451 |
[20] | Wang H. Q., Li H. F., RSC Adv., 2014, 4, 29782—29793 |
[21] | Wang J., Zhao J., Ma L., Wang B., Wang G., Phys. Lett. A, 2007, 367, 335—344 |
[22] | Guo L., Zhao G., Gu Y., Liu X., Zeng Z., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77, 2—9 |
[23] | Li J., Wang G., Yao C., Mu Y., Wan J., Han M., J. Chem. Phys., 2009, 130, 164514 |
[24] | Khanna S. N., Rao B. K., Jena P., Phys. Rev. Lett., 2002, 89, 016803 |
[25] | Hang T. D., Hung H. M., Nguyen M. T., Phys. Chem. Chem. Phys., 2016, 18, 31054—31063 |
[26] | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 09, Revision C. 01, Gaussian Inc., Wallingford CT, 2010 |
[27] | Bera P. P., Sattelmeyer K. W., Saunders M., Schaefer III H. F., Schleyer P. R., J. Chem. A, 2006, 110(13), 4287—4290 |
[28] | Wang H. Q., Li H. F., Kuang X. Y., Phys. Chem. Chem. Phys., 2012, 14, 5272—2583 |
[29] | Wang H. Q., Li H. F., J. Chem. Phys., 2012, 137, 164304 |
[30] | Wang H. Q., Li H. F., Chem. Phys. Lett., 2012, 554, 231—235 |
[31] | Wang H. Q., Li H. F., Wang J. X., Kuang X. Y., J. Mol. Model., 2012, 18, 2993—3001 |
[32] | Li H. F., Wang H. Q., R. Soc. Open Sci., 2018, 5, 171019 |
[33] | Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865—3868 |
[34] | Cao X., Dolg M., J. Mol. Struct.: Theochem., 2002, 581, 139—147 |
[35] | Dolg M., Stoll H., Preuss H., J. Chem. Phys., 1989, 90, 1730—1734 |
[36] | Paduani C., Jena P., J. Nano Res., 2012, 14, 1035 |
[37] | Grubisic A., Yeon J. K., Wang H., Bowen K. H., J. Am. Chem. Soc., 2009, 131, 10783—10790 |
[38] | Tozer D. J., Handy N. C., J. Chem. Phys., 1998, 109, 10180—10189 |
[39] | Bai H., Zhai H. J., Li S. D., Wang L. S., Phys. Chem. Chem. Phys., 2013, 15, 9646—9653 |
[40] | Li W. L., Romanescu C., Piazza Z. A., Wang L. S., Phys. Chem. Chem. Phys., 2012, 14, 13663—13669 |
[41] | Galeev T. R., Ivanov A. S., Romanescu C., Li W. L., Bozhenko K. V., Wang L. S., Boldyrev A. I., Phys. Chem. Chem. Phys., 2011, 13, 8805—8810 |
[42] | Zhai H. J., Chen W. J., Huang X., Wang L. S., RSC Adv., 2012, 2, 2707—2712 |
[43] | Liu H. T., Wang Y. L., Xiong X. G., Dau P. D., Piazza Z. A., Huang D. L., Xu C. Q., Li J., Wang L. S., Chem. Sci., 2012, 3, 3286—3295 |
[44] | Pal R., Wang L. M., Huang W., Wang L. S., Zeng X. C., J. Am. Chem. Soc., 2009, 131, 3396—3404 |
[45] | Zhai H. J., Wang B., Huang X., Wang L. S., J. Phys. Chem. A, 2009, 113, 3866—3875 |
[46] | Zhai H. J., Averkiev B. B., Yu D., Wang L. S., Boldyrev A. I., Angew. Chem., Int. Ed., 2007, 46, 4277—4280 |
[1] | 史海涵,吴香萍,彭辛哲,余国静,董朝阳,纪瑶瑶,杨思文,陈俊林,王锦,冉雪芹,杨磊,解令海,黄维. 一种基于风车格结构的有效降低内重组能的咔唑类格子化分子[J]. 高等学校化学学报, 2020, 41(7): 1670-1676. |
[2] | 张作然, 张利, 张志凌. 基于侧向磁泳的微流控芯片对两种磁性纳米球的同时分选[J]. 高等学校化学学报, 2020, 41(6): 1243-1251. |
[3] | 贺进禄, 龙闰, 方维海. 非绝热分子动力学模拟A位阳离子对钙钛矿热载流子弛豫的影响[J]. 高等学校化学学报, 2020, 41(3): 439-446. |
[4] | 曹洪玉,马子辉,张文琼,唐乾,李如玉,郑学仿. 单、 双及双混氮杂卟啉的结构和电子吸收光谱[J]. 高等学校化学学报, 2020, 41(2): 341-348. |
[5] | 张林, 张尉, 岳鑫, 李鹏杰, 杨作银, 蒲敏, 雷鸣. 锰配合物催化CO2加氢生成甲酸的理论研究[J]. 高等学校化学学报, 2019, 40(9): 1911-1917. |
[6] | 魏馨, 邓要亮, 郑旭明, 赵彦英. 2-氨基苯并噻唑的结构及激发态质子转移动力学[J]. 高等学校化学学报, 2019, 40(8): 1679-1685. |
[7] | 王晓慧, 王可心, 刘俊平, 洪霞. 介孔结构增强的Fe3O4超粒子@介孔SiO2的光热性能[J]. 高等学校化学学报, 2019, 40(8): 1586-1592. |
[8] | 李泽, 王建江, 高海涛, 赵芳. 多孔羰基铁/CoFe2O4/聚苯胺复合材料的制备及吸波机理[J]. 高等学校化学学报, 2019, 40(8): 1784-1792. |
[9] | 吴姗姗, 魏缠玲, 赵丽娟, 田央, 王霞, 龚波林. 新型磁性限进分子印迹复合材料的制备及富集性能[J]. 高等学校化学学报, 2019, 40(6): 1150-1157. |
[10] | 曹培明, 尤静林, 周灿栋, LU Liming, 王建, 王敏, 丁雅妮, 徐琰东. CaF2-Al2O3-MgO电渣微结构的原位拉曼光谱及27Al魔角旋转核磁共振研究[J]. 高等学校化学学报, 2019, 40(6): 1242-1248. |
[11] | 程文敏, 夏文生, 万惠霖. 氧化镧表面反应性对甲烷和氧分子活化的影响[J]. 高等学校化学学报, 2019, 40(5): 940-949. |
[12] | 康慧敏, 王洪强, 王慧莹, 吴黎歆, 仇永清. 卟啉-碳硼烷-硼亚甲基二吡咯三元化合物二阶非线性光学性质的理论研究[J]. 高等学校化学学报, 2019, 40(5): 965-972. |
[13] | 郅莎莎, 班颖, 徐志广, 许旋. 金属串配合物[MM'M″(dpa)4(Cl)2](M=Co, Ni; M',M″=Co, Rh)电子输运的理论研究[J]. 高等学校化学学报, 2019, 40(5): 980-987. |
[14] | 刘秋娜, 许文文, 刘茂祝, 王惠钢, 郑旭明. 高分辨偏正拉曼光谱对丙酸酐C=O振动模的拉曼光谱非一致效应研究[J]. 高等学校化学学报, 2019, 40(5): 932-939. |
[15] | 张晓英, 杜桂芳, 朱博, 关威. 镍催化氮杂环丁酮和丁二烯环加成反应机制的理论研究[J]. 高等学校化学学报, 2019, 40(4): 770-776. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||