高等学校化学学报 ›› 2016, Vol. 37 ›› Issue (2): 201.doi: 10.7503/cjcu20150796
宋春霞, 羊小海(), 王柯敏(
), 王青, 刘剑波, 黄晋, 李文山, 黄海花, 刘卫
收稿日期:
2015-10-15
出版日期:
2016-02-10
发布日期:
2016-01-14
作者简介:
联系人简介: 羊小海, 男, 博士, 教授, 博士生导师, 主要从事核酸分子探针及生物传感器的研究. E-mail:基金资助:
SONG Chunxia, YANG Xiaohai*(), WANG Kemin*(
), WANG Qing, LIU Jianbo, HUANG Jin, LI Wenshan, HUANG Haihua, LIU Wei
Received:
2015-10-15
Online:
2016-02-10
Published:
2016-01-14
Contact:
YANG Xiaohai,WANG Kemin
E-mail:yangxiaohai@hnu.edu.cn;kmwang@hnu.edu.cn
Supported by:
摘要:
聚合物是由一种或几种重复单体以共价键连接形成的大分子化合物, 它不仅能够保持单体的性质, 而且由于聚合后单体间的协同作用, 使其表现出独特的性能. 聚合物作为基础材料在荧光检测领域得到广泛应用. 聚合物通过氢键作用、 亲疏水作用及范德华力等分子间相互作用, 实现了对特定目标物的选择性识别; 通过信号转换和放大功能, 可以将分子识别作用转化为荧光信号; 可以作为骨架连接多个识别单元, 通过多价结合作用等提高识别目标物的能力, 或连接不同的功能单元, 构建多功能的分子器件. 本文对聚合物在荧光检测领域的应用进行了概述.
中图分类号:
TrendMD:
宋春霞, 羊小海, 王柯敏, 王青, 刘剑波, 黄晋, 李文山, 黄海花, 刘卫. 聚合物在荧光检测领域的应用. 高等学校化学学报, 2016, 37(2): 201.
SONG Chunxia, YANG Xiaohai, WANG Kemin, WANG Qing, LIU Jianbo, HUANG Jin, LI Wenshan, HUANG Haihua, LIU Wei. Application of Polymers in Fluorescence Analysis†. Chem. J. Chinese Universities, 2016, 37(2): 201.
Fig.1 Application of polymers in fluorescence analyses[10—12] (C) Copyright(2010) from American Chemical Society; (D) Copyright(2014) from American Chemical Society; (E) Copyright(2013) from American Chemical Society.
Fig.3 Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene[19] Copyright(2013) from American Chemical Society.
Fig.4 Proposed secondary structure of the thrombin aptamer(A) and the interaction of the aptamer with human thrombin(B) [26] Copyright(1997) from Academic Press.
Fig.5 Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration[28] Copyright(2011) from National Academy of Sciences.
Fig.8 Poly(thymine)-templated selective formation of fluorescent copper nanoparticles[75] Copyright(2013) from Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.9 Competitive host-guest interaction(CHGI) between β-cyclodextrin polymer and pyrene-labeled probes for fluorescence analyses[88] Copyright(2015) from American Chemical Society.
Fig.12 Self-assembled supramolecular nanoprobes for ratiometric fluorescence measurement of intracellular pH values[101] Copyright(2015) from American Chemical Society.
[1] | Nicholson J.W., The Chemistry of Polymers, Translated by Fu Z. Y., China Textile Press, Beijing, 2005, 1—2 |
(付中玉[译]. 聚合物化学, 北京: 中国纺织出版社, 2005, 1—2) | |
[2] | Ma D.Z., He P. S., Xu Z. D., Structure and Performance of High Polymer, Science Press, Beijing, 1981, 551—552 |
(马德柱, 何平笙, 徐仲德. 高聚物的结构和性能, 北京: 科学出版社, 1981, 551—552) | |
[3] | Mascini M., Aptamers in Bioanalysis, Translated by Qu F. et al., Chemical Industry Press, Beijing, 2010, 1—5 |
(屈锋等[译]. 生物分析中的核酸适配体, 北京: 化学工业出版社, 2010, 1—5) | |
[4] | Pauling L., J. Am. Chem. Soc., 1940, 62, 2643—2657 |
[5] | Wulff G., Sarhan A., Zabrocki K., Tetrahedron Lett., 1973, 14, 4329—4332 |
[6] | Vlatakis G., Andersson L. I., Muller R., Mosbach K., Nature, 1993, 361, 645—647 |
[7] | Zhou Q., Swager T. M., J. Am. Chem. Soc., 1995, 117, 7017—7018 |
[8] | Zhou Q., Swager T. M., J. Am. Chem. Soc., 1995, 117, 12593—12602 |
[9] | Li Y., Lin T. Y., Luo Y., Liu Q., Xiao W., Guo W., Lac D., Zhang H., Feng C., Wachsmann-Hogiu S., Walton J. H., Cherry S. R., Rowland D. J., Kukis D., Pan C., Lam K. S., Nat. Commun., 2014, 5, 5712—5718 |
[10] | Schirhagl R., Anal. Chem., 2014, 86, 250—261 |
[11] | Zeng H. X., Little H., Tiambeng T., Williams G., Guan Z. B., J. Am. Chem. Soc., 2013, 135, 4962—4965 |
[12] | Duan X., Liu L., Feng F., Wang S., Acc. Chem. Res., 2010, 43, 260—270 |
[13] | Hermann T., Patel D. J., Science, 2000, 287, 820—825 |
[14] | Liu J., Cao Z., Lu Y., Chem. Rev., 2009, 109, 1948—1998 |
[15] | Yan H., Yu H.W., Wei W., Functional Polymer, Chemical Industry Press, Beijing, 2013, 92—100 |
(晏欣, 余红伟, 魏徵. 功能聚合物, 北京: 化学工业出版社, 2013, 92—100) | |
[16] | Chen L., Xu S., Li J., Chem. Soc. Rev., 2011, 40, 2922—2942 |
[17] | Jiang Z.Y., Wu H., Molecular Imprinting Technology, Chemical Industry Press, Beijing, 2003, 1—40 |
(姜忠义, 吴洪. 分子印迹技术, 北京: 化学工业出版社, , 2003, 1—40) | |
[18] | Komiyama M., Takecuchi T., Mukawa T., Asanuma H., Molecular Imprinting—from Fundamentals to Applications, Translated by Wu S. K., Wang P. F., Science Press, Beijing, 2006, 1—29 |
(吴世康, 汪鹏飞[译]. 分子印迹学—从基础到应用, 北京: 科学出版社, 2006, 1—29) | |
[19] | Xu S. F., Lu H. Z., Li J. H., Song X. L., Wang A. X., Chen L. X., Han S. B., ACS Appl. Mater. Interfaces, 2013, 5, 8146—8154 |
[20] | Liu C. B., Song Z. L., Pan J. M., Yan Y. S., Cao Z. J., Wei X., Gao L., Wang J., Dai J. D., Meng M. J., Yu P., Talanta, 2014, 125, 14—23 |
[21] | Cheng Y., Jiang P., Dong X., RSC Adv., 2015, 5, 55066—55074 |
[22] | Liu X. Y., Fang H. X., Yu L. P., Talanta, 2013, 116, 283—289 |
[23] | Fang X., Tan W., Acc. Chem. Res., 2010, 43, 48—57 |
[24] | Ellington A. D., Szostak J. W., Nature, 1990, 346, 818—822 |
[25] | Proske D., Blank M., Buhmann R., Resch A., Appl. Microbiol. Biotechnol., 2005, 69, 367—374 |
[26] | Tasset D. M., Kubik M. F., Steiner W., J. Mol. Biol., 1997, 272, 688—698 |
[27] | Song C., Yang X., Wang K., Wang Q., Liu J., Huang J., He L., Liu P., Qing Z., Liu W., Chem. Commun., 2015, 51, 1815—1818 |
[28] | Shi H., He X. X., Wang K. M., Wu X., Ye X. S., Guo Q. P., Tan W. H., Qing Z. H., Yang X. H., Zhou B., Proc. Nalt. Acad. Sci. USA, 2011, 108, 3900—3905 |
[29] | Tang Z. W., Mallikaratchy P., Yang R. H., Kim Y. M., Zhu Z., Wang H., Tan W. H., J. Am. Chem. Soc., 2008, 130, 11268—11269 |
[30] | Tan Y., Guo Q., Zhao X., Yang X., Wang K., Huang J., Zhou Y., Biosens. Bioelectron., 2014, 51, 255—260 |
[31] | Ahn D. J., Kim J. M., Acc. Chem. Res., 2008, 41, 805—816 |
[32] | Ho H. A., Najari A., Leclerc M., Acc. Chem. Res., 2008, 41, 168—178 |
[33] | Rochat S., Swager T. M., ACS Appl. Mater. Interfaces, 2013, 5, 4488—4502 |
[34] | Rose A., Zhu Z., Madigan C. F., Swager T. M., Bulovic V., Nature, 2005, 434, 876—879 |
[35] | Rochat S., Swager T. M., Angew. Chem. Int. Ed., 2014, 53, 9792—9796 |
[36] | Huang H., Shi F. P., Li Y. N., Niu L., Gao Y., Shah S. M., Su X. G., Sens. Act. B Chem., 2013, 178, 532—540 |
[37] | Hong T., Wang T., Guo P., Xing X., Ding F., Chen Y., Wu J., Ma J., Wu F., Zhou X., Anal. Chem., 2013, 85, 10797—10802 |
[38] | Huang H., Wang K., Tan W., An D., Yang X., Huang S., Zhai Q., Zhou L., Jin Y., Angew. Chem. Int. Ed., 2004, 43, 5635—5638 |
[39] | Dedeoglu B., Monari A., Etienne T., Aviyente V., Özen A. S., J. Phys. Chem. C, 2014, 118, 23946—23953 |
[40] | Wang C., Tang Y., Liu Y., Guo Y., Anal. Chem., 2014, 86, 6433—6438 |
[41] | Wang C., Tang Y., Guo Y., ACS Appl. Mater. Interfaces, 2014, 6, 21686—21691 |
[42] | Seo S., Kim J., Jang G., Kim D., Lee T. S., ACS Appl. Mater. Interfaces, 2014, 6, 918—924 |
[43] | Rush A. M., Nelles D. A., Blum A. P., Barnhill S. A., Tatro E. T., Yeo G. W., Gianneschi N. C., J. Am. Chem. Soc., 2014, 136, 7615—7618 |
[44] | Xie Y., Zhao R., Tan Y., Zhang X., Liu F., Jiang Y., Tan C., ACS Appl. Mater. Interfaces, 2012, 4, 405—410 |
[45] | Huang Y., Yao X., Zhang R., Ouyang L., Jiang R., Liu X., Song C., Zhang G., Fan Q., Wang L., Huang W., ACS Appl. Mater. Interfaces, 2014, 6, 19144—19153 |
[46] | Nie C., Zhu C., Feng L., Lv F., Liu L., Wang S., ACS Appl. Mater. Interfaces, 2013, 5, 4549—4554 |
[47] | Li J., Tian C., Yuan Y., Yang Z., Yin C., Jiang R., Song W., Li X., Lu X., Zhang L., Fan Q., Huang W., Macromolecules, 2015, 48, 1017—1025 |
[48] | Bao Y., de Keersmaecker H., Corneillie S., Yu F., Mizuno H., Zhang G., Hofkens J., Mendrek B., Kowalczuk A., Smet M., Chem. Mater., 2015, 27, 3450—3455 |
[49] | Gopalakrishnan D., Dichtel W. R., J. Am. Chem. Soc., 2013, 135, 8357—8362 |
[50] | Gaylord B. S., Heeger A. J., Bazan G. C., Proc. Nalt. Acad. Sci. USA, 2002, 99, 10954—10957 |
[51] | Nilsson K. P. R., Inganas O., Nat. Mater., 2003, 2, 419—424 |
[52] | Wang S., Gaylord B. S., Bazan G. C., J. Am. Chem. Soc., 2004, 126, 5446—5451 |
[53] | Pu K. Y., Li K., Liu B., Adv. Funct. Mater., 2010, 20, 2770—2777 |
[54] | Zheng J., Zhang C., Dickson R. M., Phys. Rev. Lett., 2004, 93, 077402 |
[55] | Yeh H. C., Sharma J., Han J. J., Martinez J. S., Werner J. H., Nano Lett., 2010, 10, 3106—3110 |
[56] | Zheng J., Petty J. T., Dickson R. M., J. Am. Chem. Soc., 2003, 125, 7780—7781 |
[57] | Zheng J., Dickson R. M., J. Am. Chem. Soc., 2002, 124, 13982—13983 |
[58] | Petty J. T., Zheng J., Hud N. V., Dickson R. M., J. Am. Chem. Soc., 2004, 126, 5207—5212 |
[59] | Guo W., Yuan J., Dong Q., Wang E., J. Am. Chem. Soc., 2010, 132, 932—934 |
[60] | Xiao S. J., Hu P. P., Xiao G. F., Wang Y., Liu Y., Huang C. Z., J. Phys. Chem. B, 2012, 116, 9565—9569 |
[61] | Seidel C. A. M., Schulz A., Sauer M. H. M., J. Phys. Chem., 1996, 100, 5541—5553 |
[62] | Lee J., Park J., Lee H. H., Kim H. I., Kim W. J., J. Mater. Chem. B, 2014, 2, 2616—2621 |
[63] | Shang L., Dong S., J. Mater. Chem., 2008, 18, 4636—4640 |
[64] | Shang L., Dong S., Chem. Commun., 2008, 7, 1088—1090 |
[65] | Tanaka S., Miyazaki J., Tiwari D. K., Jin T., Inouye Y., Angew. Chem. Int. Ed., 2011, 50, 431—435 |
[66] | Torimura M., Kurata S., Yamada K., Yokomaku T., Kamagata Y., Kanagawa T., Kurane R., Anal. Sci., 2001, 17, 155—160 |
[67] | Yang X., Zhu Y., Liu P., He L., Li Q., Wang Q., Wang K., Huang J., Liu J., Anal. Methods UK, 2012, 4, 895—897 |
[68] | Hu Y., Wu Y., Chen T., Chu X., Yu R., Anal. Methods UK, 2013, 5, 3577—3581 |
[69] | Zhang Z., Sharon E., Freeman R., Liu X., Willner I., Anal. Chem., 2012, 84, 4789—4797 |
[70] | Yin J., He X., Wang K., Xu F., Shangguan J., He D., Shi H., Anal. Chem., 2013, 85, 12011—12019 |
[71] | Cao A. P., Zhang C. Y., Anal. Chem., 2012, 84, 6199—6205 |
[72] | Wang L., Tian J. Q., Li H. L., Zhang Y. W., Sun X. P., Analyst, 2011, 136, 891—893 |
[73] | Yin J., He X., Wang K., Qing Z., Wu X., Shi H., Yang X., Nanoscale, 2012, 4, 110—112 |
[74] | Rotaru A., Dutta S., Jentzsch E., Gothelf K., Mokhir A., Angew. Chem. Int. Ed., 2010, 49, 5665—5667 |
[75] | Qing Z., He X., He D., Wang K., Xu F., Qing T., Yang X., Angew. Chem. Int. Ed., 2013, 52, 9719—9722 |
[76] | Qing Z., Mao Z., Qing T., He X., Zou Z., He D., Shi H., Huang J., Liu J., Wang K., Anal. Chem., 2014, 86, 11263—11268 |
[77] | Xu F., Shi H., He X., Wang K., He D., Guo Q., Qing Z., Yan L. A., Ye X., Li D., Tang J., Anal. Chem., 2014, 86, 6976—6982 |
[78] | Zhang L., Zhao J., Duan M., Zhang H., Jiang J., Yu R., Anal. Chem., 2013, 85, 3797—3801 |
[79] | Zhou Z., Du Y., Dong S., Anal. Chem., 2011, 83, 5122—5127 |
[80] | Hu R., Liu Y., Kong R., Donovan M. J., Zhang X., Tan W., Shen G., Yu R., Biosens. Bioelectron., 2013, 42, 31—35 |
[81] | Chen J., Liu J., Fang Z., Zeng L., Chem. Commun., 2012, 48, 1057—1059 |
[82] | Wang X. P., Yin B. C., Ye B. C., RSC Adv., 2013, 3, 8633—8636 |
[83] | Qing Z. H., He X. X., Qing T. P., Wang K. M., Shi H., He D. G., Zou Z., Yan L., Xu F. Z., Ye X. S., Mao Z. G., Anal. Chem., 2013, 85, 12138—12143 |
[84] | Jia X., Li J., Han L., Ren J., Yang X., Wang E., ACS Nano, 2012, 6, 3311—3317 |
[85] | Yuan Z.Q., Polyethyleneimine Assisted Synthesis of Fluorescent Gold/Silver Nanomaterials and Their Applications, Hunan University, Changsha, 2013, 70—85 |
(袁智勤. 聚乙烯亚胺辅助的荧光金、 银纳米材料的合成及应用研究, 长沙: 湖南大学, 2013, 70—85) | |
[86] | Yuan Z., Peng M., Shi L., Du Y., Cai N., He Y., Chang H. T., Yeung E. S., Nanoscale, 2013, 5, 4683—4686 |
[87] | Hollas M., Chung M. A., Adams J., J. Phys. Chem. B, 1998, 102, 2947—2953 |
[88] | Liu P., Sun S., Guo X., Yang X., Huang J., Wang K., Wang Q., Liu J., He L., Anal. Chem., 2015, 87, 2665—2671 |
[89] | Guo X., Liu P., Yang X., Wang K., Wang Q., Guo Q., Huang J., Liu J., Song C., Li W., Analyst, 2015, 140, 2016—2022 |
[90] | Guo X., Yang X., Liu P., Wang K., Wang Q., Guo Q., Huang J., Li W., Xu F., Song C., Analyst, 2015, 140, 4291—4297 |
[91] | Zheng D., Zou R., Lou X., Anal. Chem., 2012, 84, 3554—3560 |
[92] | Pomerantz A. K., Moerner W. E., Kool E. T., J. Phys. Chem. B, 2008, 112, 13184—13187 |
[93] | Oba S., Hatakeyama M., Handa H., Kawaguchi H., Bioconjugate Chem., 2005, 16, 551—558 |
[94] | Liao D. L., Chen J., Zhou H. P., Wang Y., Li Y. X., Yu C., Anal. Chem., 2013, 85, 2667—2672 |
[95] | Wang B., Yu C., Angew. Chem. Int. Ed., 2010, 49, 1485—1488 |
[96] | Wurthner F., Chen Z., Dehm V., Stepanenko V., Chem. Commun., 2006, 37, 1188—1190 |
[97] | Zhu G., Zhang S., Song E., Zheng J., Hu R., Fang X., Tan W., Angew. Chem. Int. Ed., 2013, 52, 5490—5496 |
[98] | Zhu G., Zheng J., Song E., Donovan M., Zhang K., Liu C., Tan W., Proc. Nalt. Acad. Sci. USA, 2013, 110, 7998—8003 |
[99] | Yang L., Meng L., Zhang X., Chen Y., Zhu G., Liu H., Xiong X., Sefah K., Tan W., J. Am. Chem. Soc., 2011, 133, 13380—13386 |
[100] | Balamurugan A., Lee H. I., Macromolecules, 2015, 48, 3934—3940 |
[101] | He L., Yang X., Zhao F., Wang K., Wang Q., Liu J., Huang J., Li W., Yang M., Anal. Chem., 2015, 87, 2459—2465 |
[102] | Yan H., He L., Ma C., Li J., Yang J., Yang R., Tan W., Chem. Commun., 2014, 50, 8398—8401 |
[103] | Yan H., He L., Zhao W., Li J., Xiao Y., Yang R., Tan W., Anal. Chem., 2014, 86, 11440—11450 |
[1] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[2] | 翁美琪, 商桂铭, 王家泰, 李盛华, 樊志, 林松, 郭敏杰. 有机磷神经毒剂分子印迹聚合物的模拟模板分子[J]. 高等学校化学学报, 2022, 43(8): 20220136. |
[3] | 丁杨, 王万辉, 包明. 多孔骨架固定分子催化剂催化CO2加氢制备甲酸研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220309. |
[4] | 姬发, 刘玲, 余林玲, 孙彦. 黏惰化及酸敏感修饰对纳米粒子黏膜穿透的影响[J]. 高等学校化学学报, 2022, 43(6): 20210837. |
[5] | 鲁聪, 李振华, 刘金露, 华佳, 李光华, 施展, 冯守华. 一种新的镧系金属有机骨架材料的合成、 结构及荧光检测性质[J]. 高等学校化学学报, 2022, 43(6): 20220037. |
[6] | 高文秀, 吕杰琼, 高永平, 孔长剑, 王雪平, 郭胜男, 娄大伟. 富氮多孔有机聚合物催化制备α⁃氰基肉桂酸乙酯[J]. 高等学校化学学报, 2022, 43(6): 20220078. |
[7] | 刘晓磊, 陆永强, 游淇, 刘国辉, 姚伟, 胡日茗, 闫纪宪, 崔玉, 杨小凤, 孙国新, 蒋绪川. 基于3-羟基沙利度胺的比率型荧光探针对过氧化氢的检测[J]. 高等学校化学学报, 2022, 43(6): 20220070. |
[8] | 汪明芳, 付华, 付志博, 王月荣, 章弘扬, 张敏, 胡坪. 聚合物共混物的超高效液相色谱-空间排阻色谱在线联用分离与表征[J]. 高等学校化学学报, 2022, 43(4): 20210865. |
[9] | 陶幸福, 韩成龙, 杨扬, 刘堃. 铝纳米粒子表面引发聚合制备核壳纳米结构[J]. 高等学校化学学报, 2022, 43(10): 20220367. |
[10] | 唐元晖, 李春玉, 林亚凯, 张春晖, 刘泽, 余立新, 王海辉, 王晓琳. 链段刚性对非溶剂致相分离成膜过程影响的耗散粒子动力学模拟[J]. 高等学校化学学报, 2022, 43(10): 20220169. |
[11] | 马鉴新, 刘晓东, 徐娜, 刘国成, 王秀丽. 一种具有发光传感、 安培传感和染料吸附性能的多功能Zn(II)配位聚合物[J]. 高等学校化学学报, 2022, 43(1): 20210585. |
[12] | 李文, 乔珺一, 刘鑫垚, 刘云凌. 含萘基团的锆金属有机骨架材料对水中硝基芳烃爆炸物的荧光检测性能[J]. 高等学校化学学报, 2022, 43(1): 20210654. |
[13] | 杨英杰, 张晓蓉, 孙玉雪, 刘军, 谢海明. 一种双锂盐梳状聚合物电解质的制备及电化学性能[J]. 高等学校化学学报, 2021, 42(9): 2861. |
[14] | 赵慧君, 吴通, 孙玥, 段炼, 马嫣宇. 基于香豆素的比率型荧光探针对溶液及气相中三氟化硼的检测[J]. 高等学校化学学报, 2021, 42(8): 2422. |
[15] | 梁平平, 刘帅, 李红艺, 丁亚丹, 温晓琨, 刘俊平, 洪霞. PVDF⁃CNT自漂浮多孔微珠的制备及在高效太阳能驱动界面水蒸发中的应用[J]. 高等学校化学学报, 2021, 42(8): 2689. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||