高等学校化学学报 ›› 2012, Vol. 33 ›› Issue (08): 1698-1702.doi: 10.3969/j.issn.0251-0790.2012.08.012

• 分析化学 • 上一篇    下一篇

基于薄膜电极的细胞电融合芯片

张小玲1, 杨军1, 胡宁1, 侯文生1, 郑小林1, 谢琳2, 杨忠3, 陈洁4   

  1. 1. 重庆大学生物工程学院, 生物流变科学与技术教育部重点实验室, 重庆 400030;
    2. 第三军医大学大坪医院野战外科研究所眼科, 重庆 400042;
    3. 第三军医大学基础医学部组织学与胚胎学教研室, 重庆 400038;
    4. 重庆医科大学附属儿童医院儿童营养研究中心, 重庆 400014
  • 收稿日期:2011-10-08 出版日期:2012-08-10 发布日期:2012-08-10
  • 通讯作者: 杨 军, 男, 博士, 研究员, 博士生导师, 主要从事微流控生物芯片和生物传感器研究. E-mail: bioyangjun@cqu.edu.cn E-mail:yjun1999@hotmail.com
  • 基金资助:

    国家自然科学基金(批准号: 81071278, 30870661, 81101168); 教育部"新世纪优秀人才支持计划"(批准号: NCET-09-0842); 重庆市科技计划(批准号: CSTC2010AC5029, CSTC2009AB5081, CSTC2009BB5180)和重庆大学研究生创新团队建设项目(批准号: 200909A1002)资助.

Thin Film Electrode Based Cell Electrofusion Chip

ZHANG Xiao-Ling1, YANG Jun1, HU Ning1, HOU Wen-Sheng1, ZHENG Xiao-Lin1, XIE Lin2, YANG Zhong3, CHEN Jie4   

  1. 1. Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China;
    2. Department of Ophthalmology, Research Institute of Field and Surgery of Daping Hospital, the Third Military Medical University, Chongqing 400042, China;
    3. Department of Histology and Embryology, the Third Military Medical University, Chongqing 400038, China;
    4. Nutritional Research Center, the Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
  • Received:2011-10-08 Online:2012-08-10 Published:2012-08-10

摘要: 构建了一种薄膜电极阵列结构的细胞电融合芯片, 通过多聚物微通道底/顶层凸齿状的微电极, 以及多聚物微通道侧壁上溅射形成的一层离散式金属薄膜电极, 共同形成离散式"三明治"微电极结构. 该微电极结构可在微通道内部形成与传统凸齿状电极相似的非均匀分布的梯度电场, 通过介电电泳效应进行细胞控制及排队. 利用多聚物在芯片上填充了传统凸齿状电极的凹陷区, 克服了细胞在凹陷区无法有效排队与融合的缺点. 在芯片上利用K562细胞开展了基于介电电泳效应的细胞排队实验及基于可逆性电穿孔效应的电融合实验, 结果表明该芯片能够较好地实现细胞排队及融合, 融合所需控制电压低至10 V左右. 细胞排队率达99%以上, 几乎无细胞在绝缘物填充区(传统凸齿电极芯片的凹陷区)滞留, 细胞两两排队高于60%, 细胞融合效率约为40%, 比传统的细胞电融合方法和凸齿电极芯片有较大提高.

关键词: 薄膜电极, 细胞电融合, 微流控芯片, 排队, 电穿孔

Abstract: A microfluidic chip based on thin film microelectrode structure was developed for high efficiency cell electrofusion. The top/bottom thin film microelectrode array and the discrete thin film microelectrodes sputtered on the sidewalls of the polymer(Durimide 7510) microchannel constructed the discrete "sandwich" microelectrode structure. As the traditional protruding microelectrodes, this structure could generate nonuniform electric field for dielectrophoresis-based cell alignment/pairing between the microchannel. The cavity between two adjacent microeledctrodes was also filled using the Durimide 7510. It could overcome the shortcoming in the traditional protruding cell-electrofusion chip where many cells could not be aligned and fused in the unfilled cavity. Experimental investigation of cell alignment based on dielectrophoresis and cell electrofusion based on reversible electroporation were conducted using K562 cells and good results were achieved. Low voltage pulses (ca. 10 V) series could produce a strong enough electric field for reversible electroporation. Most cells (ca. 99%) were trapped on the surface of the thin film microelectrodes and almost no cells were docked between two adjacent electrodes on the same sidewall. More than 60% cells were aligned as cell-cell twins and about 40% cells were fused. Thus, compared with traditional cell electrofusion method and protruding microelectrode structures, higher alignment and fusion efficiency were achieved.

Key words: Thinfilm electrode, Cell electrofusion, Microfluidic chip, Alignment, Electroporation

中图分类号: