Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (3): 20240458.doi: 10.7503/cjcu20240458
• Physical Chemistry • Previous Articles Next Articles
SHEN Yuhao, TIAN Zemin(), LI Wei, JI Yixuan, YAN Yingwen
Received:
2024-10-09
Online:
2025-03-10
Published:
2024-11-19
Contact:
TIAN Zemin
E-mail:tzm@nuaa.edu.cn
Supported by:
CLC Number:
TrendMD:
SHEN Yuhao, TIAN Zemin, LI Wei, JI Yixuan, YAN Yingwen. Theoretical Study of the Effect of Conformational Structures on the Secondary Oxidation Reactions of cis-1,3-Dimethylcyclohexane[J]. Chem. J. Chinese Universities, 2025, 46(3): 20240458.
Species | Qvibration | Qelectronic | Qtranslational | Qrotational |
---|---|---|---|---|
TS_aaR2eQ8j_Q3j | 0.620×1018 | 0.200×101 | 0.910×108 | 0.121×107 |
TS_eeR2aQ8j_Q3j | 0.201×1019 | 0.200×101 | 0.910×108 | 0.120×107 |
TS_aaR2eQ8j_Q4j | 0.426×1018 | 0.200×101 | 0.910×108 | 0.119×107 |
TS_eeR2aQ8j_Q4j | 0.127×1018 | 0.200×101 | 0.910×108 | 0.106×107 |
Table 1 Isomerisable structural partition functions
Species | Qvibration | Qelectronic | Qtranslational | Qrotational |
---|---|---|---|---|
TS_aaR2eQ8j_Q3j | 0.620×1018 | 0.200×101 | 0.910×108 | 0.121×107 |
TS_eeR2aQ8j_Q3j | 0.201×1019 | 0.200×101 | 0.910×108 | 0.120×107 |
TS_aaR2eQ8j_Q4j | 0.426×1018 | 0.200×101 | 0.910×108 | 0.119×107 |
TS_eeR2aQ8j_Q4j | 0.127×1018 | 0.200×101 | 0.910×108 | 0.106×107 |
Species | p | T/K | A/(cm3·mol-1·s-1) | n | Ea/(J·mol-1) |
---|---|---|---|---|---|
eeR1aQ3j_ROO=eeR1aQ3j_Q5j | High pressure limit | 300—1800 | 3810.91011 | 2.233127 | 91038.6100 |
eeR1aQ3j_ROO=eeR1aQ3j_Q8j | High pressure limit | 300—1800 | 0.00603018 | 4.184921 | 110374.254 |
aaR2eQ8j_ROO=aaR2eQ8j_Q3j | High pressure limit | 300—1800 | 0.00075039 | 4.380401 | 88013.0340 |
eeR2aQ8j_ROO=eeR2aQ8j_Q4j | High pressure limit | 300—1800 | 511.615286 | 2.563875 | 76505.7788 |
eeR4aQ8j_ROO=eeR4aQ8j_Q2j | High pressure limit | 300—1800 | 482.278753 | 2.694932 | 91171.6612 |
eeR7eQ2j_ROO=eeR7eQ2j_Q6j | High pressure limit | 300—1800 | 106106.155 | 2.030745 | 83644.8125 |
eeR1aQ3j_Q4j=eeR1aQ3j_Q4j_ 3, 4ETH+OH | High pressure limit | 300—1800 | 28615758188 | 0.55146 | 34063.5255 |
aaR2eQ8j_Q5j=aaR2eQ8j_Q5j_ 5, 8ETH+OH | High pressure limit | 300—1800 | 43248373753 | 0.491631 | 52072.7251 |
eeR2aQ8j_Q3j=eeR2aQ8j_Q3j_ 2, 3ETH+OH | High pressure limit | 300—1800 | 2.017×1012 | 0.384468 | 55228.1305 |
eeR2aQ8j_Q3j=eeR2aQ8j_Q3j_ 3, 8ETH+OH | High pressure limit | 300—1800 | 4.089×1012 | 0.40081 | 57004.1967 |
aaR2eQ8j=aaR2eQ8j_KHP+OH | High pressure limit | 300—1800 | 0.33388960 | 3.55955587 | 86321.7713 |
eeR2aQ8j=eeR2aQ8j_2KHP+OH | High pressure limit | 300—1800 | 8.628519146 | 3.276908 | 72540.9786 |
eeR4aQ8j_Q3j=eeR4aQ8j_Q3j_ 3, 4ETH+OH | High pressure limit | 300—1800 | 1.199×1011 | 0.68421 | 48920.7087 |
eeR4aQ8j_Q3j=eeR4aQ8j_Q3j_ 3, 8ETH+OH | High pressure limit | 300—1800 | 76225583785 | 0.665072 | 49742.3208 |
eeR4aQ8j=eeR4aQ8j_4KHP+OH | High pressure limit | 300—1800 | 0.430188908 | 3.452753 | 76366.7445 |
eeR7eQ2j_Q6j=eeR7eQ2j_Q6j_ 2, 6ETH+OH | High pressure limit | 300—1800 | 1.804×1014 | -0.08062 | 87319.034 |
eeR7eQ2j=eeR7eQ2j_Q2j+OH | High pressure limit | 300—1800 | 5.4001959 | 3.551797 | 137825.562 |
Table 2 Reaction rate constants for some important reactions
Species | p | T/K | A/(cm3·mol-1·s-1) | n | Ea/(J·mol-1) |
---|---|---|---|---|---|
eeR1aQ3j_ROO=eeR1aQ3j_Q5j | High pressure limit | 300—1800 | 3810.91011 | 2.233127 | 91038.6100 |
eeR1aQ3j_ROO=eeR1aQ3j_Q8j | High pressure limit | 300—1800 | 0.00603018 | 4.184921 | 110374.254 |
aaR2eQ8j_ROO=aaR2eQ8j_Q3j | High pressure limit | 300—1800 | 0.00075039 | 4.380401 | 88013.0340 |
eeR2aQ8j_ROO=eeR2aQ8j_Q4j | High pressure limit | 300—1800 | 511.615286 | 2.563875 | 76505.7788 |
eeR4aQ8j_ROO=eeR4aQ8j_Q2j | High pressure limit | 300—1800 | 482.278753 | 2.694932 | 91171.6612 |
eeR7eQ2j_ROO=eeR7eQ2j_Q6j | High pressure limit | 300—1800 | 106106.155 | 2.030745 | 83644.8125 |
eeR1aQ3j_Q4j=eeR1aQ3j_Q4j_ 3, 4ETH+OH | High pressure limit | 300—1800 | 28615758188 | 0.55146 | 34063.5255 |
aaR2eQ8j_Q5j=aaR2eQ8j_Q5j_ 5, 8ETH+OH | High pressure limit | 300—1800 | 43248373753 | 0.491631 | 52072.7251 |
eeR2aQ8j_Q3j=eeR2aQ8j_Q3j_ 2, 3ETH+OH | High pressure limit | 300—1800 | 2.017×1012 | 0.384468 | 55228.1305 |
eeR2aQ8j_Q3j=eeR2aQ8j_Q3j_ 3, 8ETH+OH | High pressure limit | 300—1800 | 4.089×1012 | 0.40081 | 57004.1967 |
aaR2eQ8j=aaR2eQ8j_KHP+OH | High pressure limit | 300—1800 | 0.33388960 | 3.55955587 | 86321.7713 |
eeR2aQ8j=eeR2aQ8j_2KHP+OH | High pressure limit | 300—1800 | 8.628519146 | 3.276908 | 72540.9786 |
eeR4aQ8j_Q3j=eeR4aQ8j_Q3j_ 3, 4ETH+OH | High pressure limit | 300—1800 | 1.199×1011 | 0.68421 | 48920.7087 |
eeR4aQ8j_Q3j=eeR4aQ8j_Q3j_ 3, 8ETH+OH | High pressure limit | 300—1800 | 76225583785 | 0.665072 | 49742.3208 |
eeR4aQ8j=eeR4aQ8j_4KHP+OH | High pressure limit | 300—1800 | 0.430188908 | 3.452753 | 76366.7445 |
eeR7eQ2j_Q6j=eeR7eQ2j_Q6j_ 2, 6ETH+OH | High pressure limit | 300—1800 | 1.804×1014 | -0.08062 | 87319.034 |
eeR7eQ2j=eeR7eQ2j_Q2j+OH | High pressure limit | 300—1800 | 5.4001959 | 3.551797 | 137825.562 |
1 | Zhang T., Sun W., Wang L., Ju Y., Combust. Flame, 2019, 200, 342—353 |
2 | Okada Y., Miyashita S., Izumi Y., Hayakawa Y., SAE Int. J. Engines, 2014, 7, 584—594 |
3 | Dec J. E., Pro. Combust. Inst., 2009, 488, 294—303 |
4 | Splitter D., Reitz R., Hanson R., SAE Int. J. Fuels Lubr., 2010, 3, 742—756 |
5 | Ju Y., Combust. Flame, 2017, 178, 61—69 |
6 | Liu D., Santner J., Togbé C., Felsmann D., Koppmann J., Lackner A., Kohse⁃Höinghaus K., Combust. Flame, 2013, 160(12), 2654—2668 |
7 | Dong X., Duan H., Jia M., J. Fuel Sci., 2023, 127—531 |
8 | Bergthorson J. M., Thomson M. J., Renew Sustain Energy Rev., 2015, 42, 1393—1417 |
9 | Tan N. X., Wang J. B., Hua X. X., Li Z. R., Li X. Y., Chem. J. Chinese Universities, 2011, 32(8), 1832—1837 |
谈宁馨, 王静波, 华晓筱, 李泽荣, 李象远. 高等学校化学学报, 2011, 32(8), 1832—1837 | |
10 | Li Y. L., Wang J. B., Li X. Y., Chem. J. Chinese Universities, 2018, 39(6), 1212—1220 |
李颖丽, 王静波, 李象远. 高等学校化学学报, 2018, 39(6), 1212—1220 | |
11 | Shang Y., Li X., Zhang Z., Sun R., Luo S., Combust. Flame, 2024, 261, 113—320 |
12 | Oleinikov A. D., Azyazov V. N., Mebel A. M., Combust. Flame, 2018, 191, 209—319 |
13 | Ruan S., Yin J., Shi Y., Qin C., Xu K., He C., Hu X., Zhang L., Combust. Flame, 2023, 249, 112616 |
14 | Ye L., Wang D., Bian H., Li B., Gao W., Bi M., Combust. Flame, 2021, 227, 95—105 |
15 | Villano S. M., Huynh L. K., Carstensen H. H., Dean A. M., J. Phys. Chem. A, 2011, 115, 13425—13442 |
16 | Villano S. M., Huynh L. K., Carstensen H. H., Dean A. M., J. Phys. Chem. A, 2012, 116, 5068—5089 |
17 | Xing L., Bao J. L., Wang Z., Wang X., Truhlar D. G., Combust. Flame, 2018, 197, 88—101 |
18 | Xing L., Bao J. L., Wang Z., Wang X., Truhlar D. G., J. Am. Chem. Soc., 2018, 140, 17556—17570 |
19 | Yao Q., Sun X. H., Li Z. R., Chen F. F., Li X. Y., J. Phys. Chem. A, 2017, 121, 3001—3018 |
20 | Sarathy S. M., Farooq A., Kalghatgi G. T., Prog. Energy Combust. Sci., 2018, 65, 67—108 |
21 | Edwards T., Maurice L. Q., J. Propul. Power, 2001, 17, 461—466 |
22 | Pitz W. J., Mueller C. J., Prog. Energy Combust. Sci., 2011, 37(3), 330—350 |
23 | Liu G., Yan B., Chen G., Renew. Sustain. Energy Rev., 2013, 25, 59—70 |
24 | Balster L. M., Corporan E., DeWitt M. J., Edwards J. T., Ervin J. S., Graham J. L., Lee S. Y., Pal S., Phelps D. K., Rudnick L. R., Santoro R. J., Schobert H. H., Shafer L. M., Striebich R. C., West Z. J., Wilson G. R., Woodward R., Zabarnick S., Fuel Process. Technol., 2008, 89, 364—378 |
25 | Zhang X., Yan H., Zhu L. J., Li T., Wang S. R., Adv. Sustain. Syst., 2020, 4(10), 1900136 |
26 | Mao Y., Wang S., Wu Z., Qiu Y., Yu L., Ruan C., Chen F., Zhu L., Lu X., Combust. Flame, 2019, 206, 83—97 |
27 | Yang Y., Boehman A. L., Siimmie J. M., Combust. Flame, 2010, 157, 2357—2368 |
28 | Tian Z., Li J., Yan Y., Chem. Phys. Lett., 2020, 755, 137784 |
29 | Xing L., Lian L., Truhlar D. G., Combust. Flame, 2021, 231, 111503 |
30 | Yao X. X., Wang J. B., Yao Q., Li Y. Q., Li Z. R., Li X. Y., Combust. Flame, 2019, 204, 176—188 |
31 | Zou J., Jin H., Liu D., Zhang X., Combust. Flame, 2022, 235, 111550 |
32 | Bian H., Zhang Z., Kuang Y., Li N., Chem. Phys. Lett., 2024, 853, 141496 |
33 | Bian H., Wang Y., Li J., Zhao J., Int. J. Quantum Chem., 2022, 122, e26890 |
34 | Bian H., Zhang Y., Wang Y., Zhao J., Ruan X., Li J., Int. J. Quantum Chem., 2021, 121(11), e26636 |
35 | Ye L., Zhang L., Qi F., Combust. Flame, 2018, 190, 119—132 |
36 | Alecu I. M., Truhlar D. G., J. Phys. Chem. A, 2011, 115(13), 2811—2829 |
37 | Constantinou L., Gani R., Aiche J., 1994, 40(10), 1697—1710 |
38 | Georgievskii Y., Miller J. A., Burke M. P., Klippenstein S. J., J. Phys. Chem. A, 2013 117(46), 12146—12154 |
39 | Yang Y., Boehman A. L., Simmie J. M., Combust. Flame, 2010, 157(12), 2369—2379 |
40 | Bian H., Ye L., Li J., Sun J., Liang T., Zhong W., Zhao J., Combust. Flame, 2019, 205, 193—205 |
41 | Zou J., Li Y., Ye L., Jin H., Combust. Flame, 2022, 235, 111658 |
42 | Zhang H., Guo J., Xu P., Zhang C., Wang J., Combust. Flame, 2022, 245, 112307 |
43 | Miyoshi A., J. Phys. Chem. A, 2011, 115(15), 3301 |
44 | Serinyel Z., Herbinet O., Frottier O., Dirrenberger P., Warth V., Glaude P. A., Battin⁃Leclerc F., Combust. Flame, 2013, 160(11), 2319—2332 |
45 | Silke E. J., Pitz W. J., Westbrook C. K., Ribaucour M., J. Phys. Chem. A, 2007, 111(19), 3761—3775 |
46 | Xing L., Zhang F., Zhang L., Proc. Combust. Inst., 2017, 36(1), 179—186 |
[1] | QIN Haijing, HE Qianjun, XU Minmin, YUAN Yaxian, YAO Jianlin. Electrochemical-SERS Investigation on the Decarboxylated Reaction of PMBA in Ionic Liquid and Influence of Interfacial Water [J]. Chem. J. Chinese Universities, 2024, 45(1): 20230349. |
[2] | XU Deyi, DING Chaojun, LI Fang, LIU Yueming, HE Mingyuan. P-Modified Deactivated TS-1 as an Efficient Catalyst for Catalytic Cracking of Pentene to Ethene and Propene [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230094. |
[3] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[4] | LI Xiangyuan,YAO Xiaoxia,SHENTU Jiangtao,SUN Xiaohui,LI Juanqin,LIU Mingxia,XU Shimin. Combustion Reaction Mechanism Construction by Two-parameter Rate Constant Method [J]. Chem. J. Chinese Universities, 2020, 41(3): 512. |
[5] | WANG Ning,ZHU Huifang,WANG Lu,ZHANG Tiantian,GU Jiali,SHU Jie. Structural Identification and Asymmetric-exchange Dynamics Study of Esomeprazole Magnesium in Specific Solution as Probed by Using 1H NMR Spectra† [J]. Chem. J. Chinese Universities, 2018, 39(9): 1919. |
[6] | LI Yingli, WANG Jingbo, LI Xiangyuan. Kinetic Mechanism Study on Low Temperature for Decalin Combustion† [J]. Chem. J. Chinese Universities, 2018, 39(6): 1212. |
[7] | FANG Sheng, LIU Jingjing, DUAN Xuemei, TAO Fuming, LIU Jingyao. Ab initio Calculation and Kinetic Investigation of Monacid-catalyzed Decomposition of Sulfurous Acid [J]. Chem. J. Chinese Universities, 2017, 38(8): 1390. |
[8] | MA Qian, WANG Weina, ZHAO Qiangli, LIU Fengyi, WANG Wenliang. Theoretical Studies on the Reaction Mechanism of Criegee Intermediates RCHOO(R=H, CH3) with NCO Radical† [J]. Chem. J. Chinese Universities, 2017, 38(4): 613. |
[9] |
WANG Rui, LI Yili, FENG Xukai, SONG Liang, ZHANG Tianlei, WANG Zhuqing, JIN Lingxia, ZHANG Qiang, XU Qiong, WANG Zhiyin.
Catalytic Effect of n(H2O)(n=1,2) on the Reaction of HO2+NO |
[10] | WANG Hao, ZHANG Jianping, MA Yunsheng, WANG Riguo, HE Aihua. Modification of SSBR/BR with Trans-1,4-Polyisoprene Alloy Rubber for High Performance Passenger Car Radical Tire Tread Stock† [J]. Chem. J. Chinese Universities, 2017, 38(11): 2095. |
[11] | GAO Zhifang, WANG Weina, MA Qian, LIU Fengyi, WANG Wenliang. Theoretical Studies on the Reaction Mechanism of Criegee Intermediates CH3CHOO with OH Radicals† [J]. Chem. J. Chinese Universities, 2016, 37(3): 513. |
[12] | ZHU Peng, DUAN Xuemei, LIU Jingyao. Mechanism and Kinetics of the Hydrogen-abstraction Reaction of CF2ClC(O)OCH2CH3 with OH Radicals† [J]. Chem. J. Chinese Universities, 2016, 37(1): 79. |
[13] | WANG Kuan, CHEN Jiangang, WANG Bozhou, LU Jian, WANG Wenliang, LIU Fengyi, ZHOU Cheng, LIAN Peng, LIU Zhongwen, LIU Zhaotie. Mechanisms and Kinetics of the Synthesis of FOX-12† [J]. Chem. J. Chinese Universities, 2015, 36(3): 531. |
[14] | HU Xixi, YANG Junying, XIE Daiqian. State-to-state Quantum Dynamics of Reaction N+NH→N2+H [J]. Chem. J. Chinese Universities, 2015, 36(11): 2198. |
[15] | LI Yue, FANG Decai. Density Functional Theory Studies on the t-Butoxyl Radical Mediated Hydrogen Atom Transfer Reactions† [J]. Chem. J. Chinese Universities, 2015, 36(10): 1954. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||