Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (3): 20240460.doi: 10.7503/cjcu20240460
• Physical Chemistry • Previous Articles Next Articles
LIU Yixuan1, HU Huimin1, FAN Xiaoqiang1(), YU Xuehua1, KONG Lian1, XIAO Xia1, XIE Zean1, ZHAO Zhen1,2(
)
Received:
2024-10-10
Online:
2025-03-10
Published:
2024-12-07
Contact:
FAN Xiaoqiang
E-mail:fanxiaoqiang1986@126.com;zhenzhao@cup.edu.cn
Supported by:
CLC Number:
TrendMD:
LIU Yixuan, HU Huimin, FAN Xiaoqiang, YU Xuehua, KONG Lian, XIAO Xia, XIE Zean, ZHAO Zhen. Preparation of Pt/Mn-silicalite-1 Catalysts and Their Catalytic Performance for Propane Dehydrogenation[J]. Chem. J. Chinese Universities, 2025, 46(3): 20240460.
Sample | Theoretical content(%, mass ratio) | Real content(%, mass ratio) |
---|---|---|
0.01Mn⁃S⁃1 | 0.076 | 0.014 |
0.05Mn⁃S⁃1 | 0.380 | 0.051 |
0.5Mn⁃S⁃1 | 3.640 | 0.074 |
1Mn⁃S⁃1 | 7.030 | 0.500 |
Table 1 Content of Mn species in the recipe measured by ICP-MS on xMn-S-1 supports
Sample | Theoretical content(%, mass ratio) | Real content(%, mass ratio) |
---|---|---|
0.01Mn⁃S⁃1 | 0.076 | 0.014 |
0.05Mn⁃S⁃1 | 0.380 | 0.051 |
0.5Mn⁃S⁃1 | 3.640 | 0.074 |
1Mn⁃S⁃1 | 7.030 | 0.500 |
Sample | Propane conversion(%) | Propene selectivity(%) | ID/IG | ||
---|---|---|---|---|---|
Initial | After 6 h | Initial | After 6 h | ||
Pt/S⁃1 | 1.5 | 1.5 | 82.4 | 63.4 | / |
Pt/0.01Mn⁃S⁃1 | 37.6 | 18.7 | 89.4 | 94.0 | 0.76 |
Pt/0.05Mn⁃S⁃1 | 51.9 | 36.7 | 77.8 | 95.0 | 1.02 |
Pt/0.5Mn⁃S⁃1 | 45.5 | 28.5 | 84.5 | 96.3 | 0.61 |
Pt/1Mn⁃S⁃1 | 44.6 | 29.3 | 83.3 | 95.0 | 0.97 |
Table 2 Catalytic performance of propane dehydrogenation over Pt/xMn-S-1 catalysts
Sample | Propane conversion(%) | Propene selectivity(%) | ID/IG | ||
---|---|---|---|---|---|
Initial | After 6 h | Initial | After 6 h | ||
Pt/S⁃1 | 1.5 | 1.5 | 82.4 | 63.4 | / |
Pt/0.01Mn⁃S⁃1 | 37.6 | 18.7 | 89.4 | 94.0 | 0.76 |
Pt/0.05Mn⁃S⁃1 | 51.9 | 36.7 | 77.8 | 95.0 | 1.02 |
Pt/0.5Mn⁃S⁃1 | 45.5 | 28.5 | 84.5 | 96.3 | 0.61 |
Pt/1Mn⁃S⁃1 | 44.6 | 29.3 | 83.3 | 95.0 | 0.97 |
Reduced temperature/℃ | Sample | Propane conversion(%) | Propene selectivity(%) | ||
---|---|---|---|---|---|
Initial | Final | Initial | Final | ||
600 | Fresh | 51.3 | 35.6 | 76.6 | 94.4 |
600 | First cycle | 48.6 | 32.2 | 76.3 | 94.3 |
600 | Second cycle | 44.1 | 28.5 | 76.1 | 94.1 |
Table 3 Cyclic test of Pt/0.05Mn-S-1 catalyst
Reduced temperature/℃ | Sample | Propane conversion(%) | Propene selectivity(%) | ||
---|---|---|---|---|---|
Initial | Final | Initial | Final | ||
600 | Fresh | 51.3 | 35.6 | 76.6 | 94.4 |
600 | First cycle | 48.6 | 32.2 | 76.3 | 94.3 |
600 | Second cycle | 44.1 | 28.5 | 76.1 | 94.1 |
1 | Grant J. T., Carrero C. A., Goeltl F., Venegas J., Mueller P., Burt S. P., Specht S. E., McDermott W. P., Chieregato A., Hermans I., Science, 2016, 354(6319), 1570—1573 |
2 | Pham H. N., Sattler J. J. H. B., Weckhuysen B. M., Datye A. K., ACS Catal., 2016, 6(4), 2257—2264 |
3 | Gambo Y., Adamu S., Abdulrasheed A. A., Lucky R. A., Ba⁃Shammakh M. S., Hossain, M. M., Appl. Catal. A: Gen., 2021, 609, 117914 |
4 | Li C., Wang G., Chem. Soc. Rev., 2021, 50(7), 4359—4381 |
5 | Sattler J. J. H. B., Ruiz⁃Martinez J., Santillan⁃Jimenez E., Weckhuysen B. M., Chem. Rev., 2014, 114(20), 10613—10653 |
6 | Ho K. S., Chye J. J. E., Chin S. Y., Cheng C. K., Bull. Chem. Reac. Eng., 2013, 8(1), 77—82 |
7 | Siri G. J., Ramallo⁃López J. M., Casella M. L., José L.G., Requejo F. G., Ferrettia O. A., Appl. Catal. A: Gen., 2005, 278(2), 239—249 |
8 | Deng L., Zhou Z., Shi T., Appl. Catal. A: Gen., 2020, 606, 117826 |
9 | Xu Z., Yue Y., Bao X., Xie Z., Zhu H., ACS Catal., 2020, 10(1), 818—828 |
10 | Sun G. D., Zhao Z. J., Mu R., Zha S. J., Li L. L., Chen S., Zang K. T., Luo J., Li Z. D., Purdy S. C., Kropf A. J., Miller J. T., Zeng L., Gong J. D., Nat. Comm., 2018, 9(1), 4454 |
11 | Tolek W., Suriye K., Praserthdam P., Panpranot J., Catal. Today, 2020, 358, 100—108 |
12 | Xie L. J., Chai Y. C., Sun L. L., Dai W. L., Wu G. J., Guan N. J., Li L. D., J. Energy. Chem., 2021, 57, 92—98 |
13 | Cesar L. G., Yang C., Lu Z., Ren Y., Zhang G., Miller J. T., ACS Catal., 2019, 9(6), 5231—5244 |
14 | Nakaya Y., Hirayama J., Yamazoe S., Shimizu K., Furukawa S., Nat. Commun., 2020, 11(1), 2838 |
15 | Chen S., Zhao Z. J., Mu R., Chang X., Luo J., Purdy S. C., Kropf A. J., Sun G., Pei C., Miller J. T., Zhou X., Vovk E., Yang Y., Gong J., Chem, 2021, 7(2), 387—405 |
16 | Wu Z., Bukowski B. C., Li Z., Milligan C., Zhou L., Ma T., Wu Y., Ren Y., Ribeiro F. H., Delgass W. N., Greeley J., Zhang G., Miller J. T., J. Am. Chem. Soc., 2018, 140(44), 14870—14877 |
17 | Fan X., Liu D., Sun X., Yu X., Li D., Yang Y., Liu H., Diao J., Xie Z., Kong L., Xiao X., Zhao Z., J. Catal., 2020, 389, 450—460 |
18 | Qu Z., Sun Q.,Inorg. Chem. Front., 2022, 9, 3095—3115 |
19 | Qu Z., Zhang T., Yin X., Chem. Res. Chinese Universities, 2023, 39(6), 870—876 |
20 | Li J. F., Zhang K., Wang N., Sun Q. M., Chem. J. Chinese Universities, 2022, 43(5), 20220032 |
李加富, 张凯, 王宁, 孙启明. 高等学校化学学报, 2022, 43(5), 20220032 | |
21 | Bang J., Jang M., Ahn Y., Park C. W., Nam S. H., Macdonald J., Cho K., Noh Y., Kim Y., Kim Y. H., Oh J., Lee S. Y., Park J., J. Am. Chem. Soc., 2024, 146(13), 8939—8948 |
22 | Qi G. G., Meng X. J., Chem. J. Chinese Universities, 2023, 44(10), 20230227 |
戚刚刚, 孟祥举. 高等学校化学学报, 2023, 44(10), 20230227 | |
23 | Shi Y., Li X., Rong X., Gu B., Wei H., Zhao Y., Wang W., Sun C., Cat. Let., 2020, 150, 2283—2293 |
24 | Ye C., Mao P., Wamg Y., Zhang N., Wang D., Jiao M., Miller J. T., ACS Appl. Mat. Inter., 2020, 12(23), 25903—25909 |
25 | Fan X. Q., Li J. M., Zhao Z., Wei Y. C., Liu J., Duan A. J., Jiang G. Y., RSC Adv., 2015, 5(36), 28305—28315 |
26 | Searles K., Wing K., Chan Burak, J. A. M., Zemlyanov D., Safonova O., Copéret C., J. Am. Chem. Soc., 2018, 140(37), 11674—11679 |
27 | Wannapakdee W., Yutthalekha T., Dugkhuntod P., Rodponthukwaji K., Thivasasith A., Nokbin S., Witoon T., Pengpanich S., Wattanakit C., Catalysts, 2019, 9(2), 174 |
28 | Zhou S., Liu S., Jing F., Jiang C., Shen J., Pang Y., Luo S., Chu W., Chem. Select., 2020, 5(14), 4175—4185 |
29 | Zhu Y., An Z., He J., J. Catal., 2016, 341, 44—54 |
30 | Sun Q., Wang N., Fan Q., Zeng L., Mayoral A., Miao S., Yang R., Jiang Z., Zhou W., Zhang J., Zhang T., Xu J., Zhang P., Cheng J., Yang D. C., Jia R., Li L., Zhang Q., Wang Y., Terasaki O., Yu J., Angew. Chem. Int. Ed., 2020, 132(44), 19618—19627 |
31 | Wang Y., Hua Z. P., Lv X., Chen L., Yuan Z. Y., J. Catal., 2020, 385, 61—69 |
32 | Ma Z., Fu T., Wang Y., Shao J., Ma Q., Zhang C., Li Z., Ind. Eng. Chem. Res., 2019, 58(6), 2146—2158 |
33 | Lita A., Ma X., Meulenberg R. W., Buuren T., Stiegman A. E., Inorg. Chem., 2008, 47(16), 7302—7308 |
34 | Yang Z., Li H., Zhou H., Wang L., Wang L., Zhu Q., Xiao J., Meng X., Chen J., Xiao F. S., J. Am. Chem. Soc., 2020, 142(38), 16429—16436 |
35 | Lee E. L., Wachs I. E., J. Phy. Chem. C, 2015, 111(39), 14410—14425 |
36 | Rahmani A., Benoit M., Benoit C., Phy. Rev. B, 2003, 68, 184202 |
37 | Meng Y., Genuino H. C., Kuo C. H., Huang H., Chen S. Y., Zhang L., Rossi A., Sui S. L., J. Am. Chem. Soc., 2013, 135(23), 8594—8605 |
38 | Zhou W. F., Chen L., Xie J., Au C. T., Yin S. F., RSC Adv., 2015, 5(91), 74162—74169 |
39 | Liu X., Gao S., Yang F., Zhou S., Kong Y., Res. Chem. Intermediate, 2020, 46, 2817—2832 |
40 | Ristić A., Mazaj M., Arčon I., Daneu N., Logar N. Z., Gläser R. Tušar N. N., Cryst. Growth Des., 2019, 19(6), 3130—3138 |
41 | Wang L., Huang B., Su, Y., Zhou G., Wang K., Luo H., Ye D., Chem. Eng. J., 2012, 192, 232—241 |
42 | Lv G., Bin F., Song C., Wang K., Song J., Fuel, 2013, 107, 217—224 |
43 | Rroux R. M., Song H., Hoefelmey J. D., J. Phy. Chem. B, 2005, 109(6), 2192—2202 |
44 | Vetrivel S., Pandurangan A., J. Mol. Catal. A: Chem., 2004, 217(1/2), 165—174 |
45 | Tan S., Kim S. J., Moore J. S., Liu Y., Dixit R. S., Pendergast J.n G. P., Sholl D. S., Nair S., Jones C. W. ChemCatChem, 2016, 8(1), 214—221 |
46 | Dumont M., Chollon G., Dourges M. A., Paillera R., Bourrat X., Naslain R., Lbruneel J., Couzi M., Carbon, 2002, 40(9), 1475—1486 |
[1] | HU Huimin, CUI Jing, LIU Dandan, SONG Jiaxin, ZHANG Ning, FAN Xiaoqiang, ZHAO Zhen, KONG Lian, XIAO Xia, XIE Zean. Influence of Different Transition Metal Decoration on the Propane Dehydrogenation Performance over Pt/M-DMSN Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210815. |
[2] | MA Zhanhua,LI Shuai,JIANG Aijing,LI Jun,SUN Lanyi,WEI Guijuan,AN Changhua. Effects of Sn Loading on Catalytic Performance of PtSn/Al2O3 in Propane Dehydrogenation† [J]. Chem. J. Chinese Universities, 2019, 40(2): 326. |
[3] | YANG Bai-Qin, LU Guo-Chao, XING Hang, ZHOU Hong-Tao, GAO An-Tao, XIAO Jin-Xin. Interactions Between Sodium p-Perfluorononenyloxy Benzene Sulfonate and Alkyl Quaternary Ammonium Salts [J]. Chem. J. Chinese Universities, 2012, 33(12): 2765. |
[4] | GENG Cai-Yun1, LI Ji-Lai1, SUN Guang-Ling2, HUANG Xu-Ri1, SUN Chia-Chung1. Density Functional Theoretical Study on the Potential Energy Surface of the Propene Hydrogenation Catalyzed by Metal Ir4 Cluster [J]. Chem. J. Chinese Universities, 2006, 27(12): 2372. |
[5] | WEI Chang-Ping, WANG Wei-Dong, SHAO Jing, ZHEN Kai-Ji . Alkylation of Benzene with Propene over SO42-/ZrO2-MCM-41 Catalyst [J]. Chem. J. Chinese Universities, 2004, 25(2): 354. |
[6] | XU De-Min, MA Zhi, MI Xia, KE Yu-Cai, HU You-Liang, WU Chun-Hong. Studies on Catalyst Containing Novel Asymmetric Diether forPropene Polymerization [J]. Chem. J. Chinese Universities, 2002, 23(5): 982. |
[7] | CHEN Tian-Hong, LIN Shang-An. Studies on Block Copolymers of Isotactic Polystyrene and Poly(ethene-co-propene)(Ⅰ)──Synthesis of iPS-b-Poly(E-co-P) Block Copolymer [J]. Chem. J. Chinese Universities, 1997, 18(11): 1875. |
[8] | ZHANG Wei-De, WAN Hui-Lin, CAT Qi-Rui . Studies on Propane Oxidative Dehydrogenation over Pure Rare Earth-Based Catalysts [J]. Chem. J. Chinese Universities, 1993, 14(4): 566. |
[9] | Mo Yi-rong, Wang Nan-qin, Zhang Qian-er . A Theoretical Study of Hyperconjugation of Propene and Methylbenzene [J]. Chem. J. Chinese Universities, 1991, 12(10): 1353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||