Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (11): 2485.doi: 10.7503/cjcu20180480
• Physical Chemistry • Previous Articles Next Articles
ZHANG Xingxing, WANG Yiqiao, GENG Yun, ZHANG Min*(), SU Zhongmin*(
)
Received:
2018-07-04
Online:
2018-11-10
Published:
2018-09-29
Contact:
ZHANG Min,SU Zhongmin
E-mail:mzhang@nenu.edu.cn;zmsu@nenu.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHANG Xingxing, WANG Yiqiao, GENG Yun, ZHANG Min, SU Zhongmin. Theoretical Studies on Enhancing the Stability of the Planar CAl4 by Al-S Bridge†[J]. Chem. J. Chinese Universities, 2018, 39(11): 2485.
Fig.1 Low-energy isomers of CAl4S- at B3LYP/def2-TZVP level, together with their relative energy(kJ/mol) difference including zero-point energy(ZPE) corrections
Method | RC-Al1 | RC-Al2 | RC-Al3 | RC-Al4 | RS-Al2 | RS-Al4 | RAl1-Al2 | RAl1-Al3 | RAl2-Al4 | RAl3-Al4 |
---|---|---|---|---|---|---|---|---|---|---|
B3LYP | 0.195 | 0.197 | 0.202 | 0.198 | 0.226 | 0.227 | 0.292 | 0.285 | 0.271 | 0.268 |
BPE0 | 0.194 | 0.192 | 0.203 | 0.197 | 0.224 | 0.226 | 0.305 | 0.276 | 0.266 | 0.263 |
M06-2X | 0.193 | 0.192 | 0.205 | 0.200 | 0.222 | 0.228 | 0.308 | 0.276 | 0.266 | 0.260 |
CCSD | 0.194 | 0.193 | 0.203 | 0.202 | 0.222 | 0.229 | 0.296 | 0.287 | 0.268 | 0.265 |
Table 1 Important bonding lengths(nm) of S-01 using different methods
Method | RC-Al1 | RC-Al2 | RC-Al3 | RC-Al4 | RS-Al2 | RS-Al4 | RAl1-Al2 | RAl1-Al3 | RAl2-Al4 | RAl3-Al4 |
---|---|---|---|---|---|---|---|---|---|---|
B3LYP | 0.195 | 0.197 | 0.202 | 0.198 | 0.226 | 0.227 | 0.292 | 0.285 | 0.271 | 0.268 |
BPE0 | 0.194 | 0.192 | 0.203 | 0.197 | 0.224 | 0.226 | 0.305 | 0.276 | 0.266 | 0.263 |
M06-2X | 0.193 | 0.192 | 0.205 | 0.200 | 0.222 | 0.228 | 0.308 | 0.276 | 0.266 | 0.260 |
CCSD | 0.194 | 0.193 | 0.203 | 0.202 | 0.222 | 0.229 | 0.296 | 0.287 | 0.268 | 0.265 |
Structure | QC/e | QAl/e | QS/e | WBIC-Al | WBIS-Al |
---|---|---|---|---|---|
S-01 | -1.289 | 0.238/0.682/0.211/0.580 | -0.422 | 0.135/0.156/0.132/0.145 | 0.214/0.202 |
S-02 | -1.356 | 0.405/0.729/0.274/0.405 | -0.457 | 0.121/0.168/0.115/0.121 | 0.406 |
Table 2 NPA charges(Q) and Wiberg bond indices(WBI) in S-01 and S-02
Structure | QC/e | QAl/e | QS/e | WBIC-Al | WBIS-Al |
---|---|---|---|---|---|
S-01 | -1.289 | 0.238/0.682/0.211/0.580 | -0.422 | 0.135/0.156/0.132/0.145 | 0.214/0.202 |
S-02 | -1.356 | 0.405/0.729/0.274/0.405 | -0.457 | 0.121/0.168/0.115/0.121 | 0.406 |
Cluster | QC/e | QAl/e | QS/e | WBIC-Al | WBIS-Al | WBIAl -Al | WBIC | WBIAl | WBIS | NICSd(1) | NICSu(1) |
---|---|---|---|---|---|---|---|---|---|---|---|
CAl4S4 | -2.48 | 1.47 | -0.85 | 0.55 | 0.83 | 0.09 | 2.46 | 2.43 | 1.84 | -14.01 | -21.96 |
CAl4 | -0.63 | 0.73 | -0.33 | 0.00 | 0.23 | 0.02 | 0.58 | 0.61 | 0.53 | -12.17 | -6.94 |
CAl4 | -1.84 | 1.53 | -0.57 | 0.42 | 0.87 | 0.23 | 2.41 | 2.32 | 2.22 | -13.60 | -16.11 |
Table 3 NPA charges, Wiberg bond indices(WBI) and Nucleus-independent chemical shift(NICS)
Cluster | QC/e | QAl/e | QS/e | WBIC-Al | WBIS-Al | WBIAl -Al | WBIC | WBIAl | WBIS | NICSd(1) | NICSu(1) |
---|---|---|---|---|---|---|---|---|---|---|---|
CAl4S4 | -2.48 | 1.47 | -0.85 | 0.55 | 0.83 | 0.09 | 2.46 | 2.43 | 1.84 | -14.01 | -21.96 |
CAl4 | -0.63 | 0.73 | -0.33 | 0.00 | 0.23 | 0.02 | 0.58 | 0.61 | 0.53 | -12.17 | -6.94 |
CAl4 | -1.84 | 1.53 | -0.57 | 0.42 | 0.87 | 0.23 | 2.41 | 2.32 | 2.22 | -13.60 | -16.11 |
Fig.6 Low-energy isomers of CAl4S4 at B3LYP/def2-TZVP level, together with their relative energy(kJ/mol) difference including zero-point energy(ZPE) corrections
MO | Percentage(%) | MO | Percentage(%) | ||||
---|---|---|---|---|---|---|---|
C | Al | S | C | Al | S | ||
HOMO | 43.04 | 19.84 | 37.12 | HOMO-10 | 3.53 | 30.63 | 65.84 |
HOMO-1 | 24.97 | 20.19 | 54.84 | HOMO-11 | 11.82 | 25.42 | 62.76 |
HOMO-2 | 24.97 | 20.19 | 54.84 | HOMO-12 | 0.03 | 46.21 | 53.76 |
HOMO-3 | 0.02 | 9.10 | 90.88 | HOMO-13 | 17.22 | 45.50 | 37.28 |
HOMO-4 | 3.71 | 20.09 | 76.20 | HOMO-14 | 17.22 | 45.50 | 37.28 |
HOMO-5 | 3.71 | 20.09 | 76.20 | HOMO-15 | 41.06 | 35.50 | 23.44 |
HOMO-6 | 0 | 21.08 | 78.92 | HOMO-16 | 0.11 | 13.73 | 86.16 |
HOMO-7 | 10.74 | 32.02 | 57.24 | HOMO-17 | 0.30 | 17.34 | 82.36 |
HOMO-8 | 0.40 | 21.88 | 77.72 | HOMO-18 | 0.30 | 17.34 | 82.36 |
HOMO-9 | 3.53 | 30.63 | 65.84 | HOMO-19 | 6.69 | 30.39 | 62.92 |
Table 4 Percentage from three elements to the MOs of quasi-planar P-01
MO | Percentage(%) | MO | Percentage(%) | ||||
---|---|---|---|---|---|---|---|
C | Al | S | C | Al | S | ||
HOMO | 43.04 | 19.84 | 37.12 | HOMO-10 | 3.53 | 30.63 | 65.84 |
HOMO-1 | 24.97 | 20.19 | 54.84 | HOMO-11 | 11.82 | 25.42 | 62.76 |
HOMO-2 | 24.97 | 20.19 | 54.84 | HOMO-12 | 0.03 | 46.21 | 53.76 |
HOMO-3 | 0.02 | 9.10 | 90.88 | HOMO-13 | 17.22 | 45.50 | 37.28 |
HOMO-4 | 3.71 | 20.09 | 76.20 | HOMO-14 | 17.22 | 45.50 | 37.28 |
HOMO-5 | 3.71 | 20.09 | 76.20 | HOMO-15 | 41.06 | 35.50 | 23.44 |
HOMO-6 | 0 | 21.08 | 78.92 | HOMO-16 | 0.11 | 13.73 | 86.16 |
HOMO-7 | 10.74 | 32.02 | 57.24 | HOMO-17 | 0.30 | 17.34 | 82.36 |
HOMO-8 | 0.40 | 21.88 | 77.72 | HOMO-18 | 0.30 | 17.34 | 82.36 |
HOMO-9 | 3.53 | 30.63 | 65.84 | HOMO-19 | 6.69 | 30.39 | 62.92 |
[1] | Monkhorst H. J., J. Chem. Soc. Chem. Commun., 1968, 18, 1111—1112 |
[2] | Hoffmann R., Alder R. W., Wilcox C. F. Jr., J. Am. Chem. Soc., 1970, 92, 4992—4993 |
[3] | Collins J. B., Dill J. D., Jemmis E. D., Apeloig Y., Schleyer P. V. R., Seeger R., Pople J. A., J. Am. Chem. Soc., 1976, 98, 5419—5427 |
[4] | Wang Z. X., Schleyer P. V. R., J. Am. Chem. Soc., 2001, 123, 994—995 |
[5] | Thommen M., Keese R., Syn. Lett., 1997, 28, 231—240 |
[6] | Rasmussen D. R., Radom L., Angew. Chem. Int. Ed., 1999, 38, 2876—2878 |
[7] | Wu Y. B., Li Z. X.,Pu X. H., Wang Z. X., J. Phys. Chem. C, 2011, 115, 3187—13192 |
[8] | Cui Z. H., Shao C. B., Gao S. M., Ding Y. H., Phys. Chem. Chem. Phys., 2010, 12, 13637—13645 |
[9] | Cui Z. H., Ding Y. H., Phys. Chem. Chem. Phys., 2011, 13, 5960—5966 |
[10] | Cui Z. H., Contreras M., Ding Y. H., Merino G., J. Am. Chem. Soc., 2011, 133, 13228—13231 |
[11] | Averkiev B. B., Zubarev D. Y., Wang L. M., Huang W., Wang L. S., Boldyrev A. I., J. Am. Chem. Soc., 2008, 130, 9248—9250 |
[12] | Wang L. M., Huang W., Averkiev B. B., Boldyrev A. I., Wang L. S., Angew. Chem. Int. Ed., 2007, 46, 4550—4553 |
[13] | Averkiev B. B., Wang L. M., Huang W., Wang L. S., Boldyrev A. I., Phys. Chem. Chem. Phys., 2009, 11, 9840—9849 |
[14] | Gao S. M., He H. P., Ding Y. H., Chem. J. Chinese Universities, 2012, 33(12), 2739—2745 |
(高斯萌, 贺海鹏, 丁益宏. 高等学校化学学报, 2012, 33(12), 2739—2745) | |
[15] | Gao S. M., He H. P., Ding Y. H., Chem. J. Chinese Universities, 2013, 34(1), 185—191 |
(高斯萌, 贺海鹏, 丁益宏. 高等学校化学学报, 2013, 34(1), 185—191) | |
[16] | Minkin V. I., Minyaev R. M., Zakharov I. I., J. Chem. Soc. Chem. Commun., 1977, 7, 213—214 |
[17] | Minyaev R. M., Gribanova T. N., Russ. Chem. Bull., 2000, 49, 783—793 |
[18] | Wiberg K. B., Chem. Rev., 1989, 89, 975—983 |
[19] | Gunale A., Pritzkow H., Siebert W., Steiner D., Berndt A., Angew. Chem. Int. Ed., 1995, 34, 1111—1113 |
[20] | Minyaev R. M., Minkin V. I., Gribanova T. N., Starikov A. G., Hoffmann R., J. Org. Chem., 2003, 68, 8588—8594 |
[21] | Höltzl T., Janssens E., Veldeman N., Veszpremi T., Lievens P., Nguyen M. T., Chem. Phys. Chem., 2008, 9, 833—838 |
[22] | Schollenberger M., Nuber B., Ziegler M. L., Angew. Chem. Int. Ed., 1992, 31, 350—351 |
[23] | Ruck M., Angew. Chem. Int. Ed., 1997, 36, 1971—1973 |
[24] | Lein M., Frunzke J., Frenking G., Angew. Chem. Int. Ed, 2003, 42, 1303—1306 |
[25] | Islas R., Heine T Ito K., Schleyer P. V. R., Merino G., J. Am. Chem. Soc., 2007, 129, 14767—14774 |
[26] | Cotton F. A., Millar M., J. Am. Chem. Soc., 1977, 99, 7886—7891 |
[27] | Radom L., Rasmussen D. R., Pure Appl. Chem., 1998, 70, 1977—1984 |
[28] | Rao V. B., George C. F., Wolff S., Agosta W. C., J. Am. Chem. Soc., 1985, 107, 5732—5739 |
[29] | Mcgrath M. P., Radom L., J. Am. Chem. Soc., 1993, 115, 3320—3321 |
[30] | Lyons J. E., Rasmussen D. R., Mcgrath M. P., Nobes R. H., Radom L., Angew. Chem. Int. Ed., 1994, 33, 1667—1668 |
[31] | Schleyer P. V. R., Boldyrev A. I., J. Chem. Soc. Chem. Commun., 1991, 21, 1536—1538 |
[32] | Boldyrev A. I., Simons J., J. Am. Chem. Soc., 1998, 120, 7967—7972 |
[33] | Li X., Wang L. S., Boldyrev A. I, Simon J., J. Am. Chem. Soc., 1999, 121, 6033—6038 |
[34] | Boldyrev A. I., Li X., Wang L. S., Geske G. D., Boldyrev A. I., Angew. Chem. Int. Ed., 2000, 39, 3307—3310 |
[35] | Wang L. S., Boldyrev A. I., Li X., Simon J., J. Am. Chem. Soc., 2000, 122, 7681—7687 |
[36] | Li Y., Liao Y., Schleyer P. V. R., Chen Z., Nanoscale, 2014, 6, 10784—10791 |
[37] | Xu J., Zhang X. X., Yu S., Ding Y. H., Bowen K. H., J. Phy. Chem. Lett., 2017, 8, 2263—2267 |
[38] | Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT, 2009 |
[1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | GUO Jinchang, LIU Fanglin. Planar Pentacoordinate Silicon and Germanium in XBe5H6(X=Si, Ge) Clusters [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210807. |
[4] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
[5] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[6] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[7] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[8] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[9] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[10] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
[11] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[12] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
[13] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[14] | ZHENG Ruoxin, ZHANG Igor Ying, XU Xin. Development and Benchmark of Lower Scaling Doubly Hybrid Density Functional XYG3 [J]. Chem. J. Chinese Universities, 2021, 42(7): 2210. |
[15] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||