Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (8): 1721.doi: 10.7503/cjcu20180118
• Physical Chemistry • Previous Articles Next Articles
FANG Lei1, XIA Shengjie1,*(), XUE Jilong1, MENG Yue2, QIAN Mengdan1, LUO Wei1, ZHANG Xiaofeng1, NI Zheming1,*(
)
Received:
2018-02-09
Online:
2018-08-10
Published:
2018-06-04
Contact:
XIA Shengjie,NI Zheming
E-mail:xiasj@zjut.edu.cn;jchx@zjut.edu.cn
Supported by:
CLC Number:
TrendMD:
FANG Lei, XIA Shengjie, XUE Jilong, MENG Yue, QIAN Mengdan, LUO Wei, ZHANG Xiaofeng, NI Zheming. Catalysis Theoretical Study on Water Gas Shift Reaction of Au-based Binary Alloy Au12M(M=Cu,Pt,Ni)†[J]. Chem. J. Chinese Universities, 2018, 39(8): 1721.
Species | Au12Cu | Au12Pt | Au12Ni | |||
---|---|---|---|---|---|---|
Adsorption site | Eads/eV | Adsorption site | Eads/eV | Adsorption site | Eads/eV | |
O | top | -5.14 | hol | -4.67 | bri | -5.37 |
OH | bri | -3.12 | hol | -3.35 | bri | -3.63 |
H | hol | -2.23 | bri | -2.97 | top | -2.81 |
H2O | top | -0.14 | hol | -0.86 | hol | -0.87 |
CO2 | hol | -0.17 | bri | -0.50 | top | -0.75 |
COOH | bri | -2.50 | top | -2.49 | hol | -2.73 |
CO | hol | -1.02 | hol | -1.78 | top | -2.40 |
H2 | hol | -0.34 | hol | -0.88 | hol | -0.96 |
Table 1 Adsorption site and adsorption energy of each reaction species on three Au12M(M=Cu,Pt,Ni) clusters
Species | Au12Cu | Au12Pt | Au12Ni | |||
---|---|---|---|---|---|---|
Adsorption site | Eads/eV | Adsorption site | Eads/eV | Adsorption site | Eads/eV | |
O | top | -5.14 | hol | -4.67 | bri | -5.37 |
OH | bri | -3.12 | hol | -3.35 | bri | -3.63 |
H | hol | -2.23 | bri | -2.97 | top | -2.81 |
H2O | top | -0.14 | hol | -0.86 | hol | -0.87 |
CO2 | hol | -0.17 | bri | -0.50 | top | -0.75 |
COOH | bri | -2.50 | top | -2.49 | hol | -2.73 |
CO | hol | -1.02 | hol | -1.78 | top | -2.40 |
H2 | hol | -0.34 | hol | -0.88 | hol | -0.96 |
Mechanism | Element reaction | Au12Cu | Au12Pt | Au12Ni | |||
---|---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | ||
1:H2O+*=H*+OH* | 0.52 | 0.39 | 1.16 | 0.44 | 0.82 | 0.10 | |
Redox | 2-a:OH*=O*+H* | 0.07 | 0.25 | 2.37 | 0.65 | 1.54 | 0.58 |
2-b:OH*+OH*=H2O*+O* | 2.15 | 0.35 | 0.54 | 0.58 | 0.44 | 0.52 | |
3:CO*+O*=C | 0.14 | -0.64 | 0.13 | -0.02 | 0.69 | -0.80 | |
Carboxyl | 4:CO*+OH*=COOH*+* | 0.63 | -0.11 | 0.81 | 0.24 | 0.85 | 0.32 |
5-a:COOH*+*=H*+C | 1.72 | -0.30 | 2.27 | -0.19 | 1.18 | -0.10 | |
5-b:COOH*+OH*=H2O*+C | 1.97 | -0.20 | 0.43 | -0.23 | 0.66 | -0.05 | |
6:2H*= | 0.66 | 0.01 | 0.56 | 0.22 | 0.22 | 0.17 |
Table 2 Activation energy and reaction energy change of each reaction step on various Au12M(M=Cu, Pt, Ni) clusters#
Mechanism | Element reaction | Au12Cu | Au12Pt | Au12Ni | |||
---|---|---|---|---|---|---|---|
Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | Ea/eV | ΔE/eV | ||
1:H2O+*=H*+OH* | 0.52 | 0.39 | 1.16 | 0.44 | 0.82 | 0.10 | |
Redox | 2-a:OH*=O*+H* | 0.07 | 0.25 | 2.37 | 0.65 | 1.54 | 0.58 |
2-b:OH*+OH*=H2O*+O* | 2.15 | 0.35 | 0.54 | 0.58 | 0.44 | 0.52 | |
3:CO*+O*=C | 0.14 | -0.64 | 0.13 | -0.02 | 0.69 | -0.80 | |
Carboxyl | 4:CO*+OH*=COOH*+* | 0.63 | -0.11 | 0.81 | 0.24 | 0.85 | 0.32 |
5-a:COOH*+*=H*+C | 1.72 | -0.30 | 2.27 | -0.19 | 1.18 | -0.10 | |
5-b:COOH*+OH*=H2O*+C | 1.97 | -0.20 | 0.43 | -0.23 | 0.66 | -0.05 | |
6:2H*= | 0.66 | 0.01 | 0.56 | 0.22 | 0.22 | 0.17 |
[1] | Liu K.H., Zhong H. X., Li S. J., Duan Y. X., Shi M. M., Zhang X. B., Yan J. M., Jiang Q, Prog. Mater. Sci., 2018, 92, 64—111 |
[2] | Yang M., Maria F.S., Catal. Today, 2017, 298, 216—225 |
[3] | Han Y., Wang W.X., Jiang P. L., Yan Y. C., Zhang H., Yang D. R., Crystengcomm, 2017, 19, 6588—6593 |
[4] | Zeng L.H., Liu Y., Lin S. H., Wayesh Q., Tao L. L., Yang C., Zhang X. M., Shu P. L., Yuen H. T., Sol. Energy Mat. Sol. C, 2018, 174, 300—306 |
[5] | Liu D., Gao Z.Y., Wang X. C., Zeng J., Li Y. M, Appl. Surf. Sci., 2017, 426, 194—205 |
[6] | Lu J., Dong X.Q., Yu Y. Z., Zhang M. H, Appl. Surf. Sci., 2017, 423, 762—770 |
[7] | Kong G.X., Ma X. J., Liu Q. J., Li Y., Liu Z. T., Physica. B, 2018, 533, 58—62 |
[8] | Thuy-Duong N., Ashleigh E.B., José A. R., Sanjaya D. S., Appl. Catal. A-Gen., 2016, 518, 18—47 |
[9] | Leonardo A.S., André R. M., Adriana B., Silvia M., Maria C. R, Rev. Rom. Mater., 2017, 22(1), 1—9 |
[10] | Muhammad A.S., Akhtar H., Muhammad S., Ortwin L., Alexandre A., Chemcatchem, 2016, 8, 1208—1217 |
[11] | Liu N., Wang X.Y., Wan Y. L., Appl. Surf. Sci., 2015, 328, 591—595 |
[12] | Gitashree D., Manash R.D., Mohammed A. A., Gaber A. M. M., Nasser Y. M., Sayed S. A. E., Sabine S., Rabah B., Int. J. Hydrogen Energy, 2018, 43, 1424—1438 |
[13] | Liu X.M., Ni Z. M., Yao P., Xu Q., Mao J. H., Wang Q. Q, Acta Phys. Chim. Sin., 2010, 26(6), 1599—1606 |
(刘晓明, 倪哲明, 姚萍, 胥倩, 毛江洪, 王巧巧. 物理化学学报, 2010, 26(6), 1599—1606) | |
[14] | Zhang X.F., Xue J. L., Meng Y., Qian M. D., Xia S. J., Ni Z. M., J. Fuel Chem. Technol., 2017, 45(12), 1—8 |
(张晓锋, 薛继龙, 孟跃, 钱梦丹, 夏盛杰, 倪哲明. 燃料化学学报, 2017, 45(12), 1—8) | |
[15] | Abas M., Tobias., Kim B., Surf. Sci., 2016, 644, 53—63 |
[16] | Ren N.N., Guo L., Dong X. N., Wen C. X., Acta Chim. Sinica, 2015, 73(4), 343—348 |
[17] | Jiang J.H., Xia S. J., Ni Z. M., Zhang L. Y., Chem. J. Chinese Universities, 2016, 37(4), 693—700 |
(蒋军辉, 夏盛杰, 倪哲明, 张连阳. 高等学校化学学报, 2016, 37(4), 693—700) | |
[18] | Cao Y.Y., Jiang J. H., Ni Z. M., Xia S. J., Qian M. D., Xue J. L., Chem. J. Chinese Universities, 2016, 37(7), 1342—1350 |
(曹勇勇, 蒋军辉, 倪哲明, 夏盛杰, 钱梦丹, 薛继龙. 高等学校化学学报, 2016, 37(7), 1342—1350) | |
[19] | Govind N., Petersen M., Fitzgerald G., King-Smith D., Andzelm J., Comput. Mater. Sci., 2003, 28, 250—258 |
[20] | Jose L.C. F., M. Natalia D. S. C., Jose R. B. G, Phys. Chem. Chem. Phys., 2017, 19, 19188—19195 |
[21] | Tao J., Yao Z.J., Xue F., Fundamentals of Material Science, Chemical Industry Press, Beijing, 2006, 50—51 |
(陶杰, 姚正军, 薛烽. 材料科学基础, 北京: 化学工业出版社, 2006, 50—51) | |
[22] | Kessentini A., Ahmed A.B., Dammak T., Belhouchet M., Spectrochim. Acta A, 2018, 191, 241—248 |
[23] | Fan W.J., Zhao Y. L., Hu Y. C., Shi H., Tan D. Z., Zhang R. Q., Int. J. Quantum Chem., 2017, 118, 1—10 |
[24] | Ham H.C., Hwang G. S., Han J., Nam S. W., Lim T. H., J. Phys. Chem. C, 2010, 114, 14922—14928 |
[25] | Morrow B.H., Resasco D. E., Striolo A., Nardelli M. B., J. Phys. Chem. C, 2011, 115, 5637—5647 |
[26] | Amit A.G., James A. D., Manos M., J. Am. Chem. Soc., 2008, 130, 1402—1414 |
[27] | Mao J.H., Ni Z. M., Pan G. X., Xu Q, Acta Phys. Chim. Sin., 2008, 24(11), 2059—2064 |
(毛江洪, 倪哲明, 潘国祥, 胥倩. 物理化学学报, 2008, 24(11), 2059—2064) |
[1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
[4] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[5] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[6] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[7] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
[8] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[9] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[10] | ZHENG Ruoxin, ZHANG Igor Ying, XU Xin. Development and Benchmark of Lower Scaling Doubly Hybrid Density Functional XYG3 [J]. Chem. J. Chinese Universities, 2021, 42(7): 2210. |
[11] | YING Fuming, JI Chenru, SU Peifeng, WU Wei. λ-DFCAS: A Hybrid Density Functional Complete Active Space Self Consistent Field Method [J]. Chem. J. Chinese Universities, 2021, 42(7): 2218. |
[12] | LIU Changhui, LIANG Guojun, LI Yanlu, CHENG Xiufeng, ZHAO Xian. Density Functional Theory Study of NH3 Adsorption on Boron Nanotubes [J]. Chem. J. Chinese Universities, 2021, 42(7): 2263. |
[13] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[14] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
[15] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||