Chem. J. Chinese Universities ›› 2016, Vol. 37 ›› Issue (3): 521.doi: 10.7503/cjcu20150721
• Physical Chemistry • Previous Articles Next Articles
ZHANG Qian, HU Shaozheng*(), LI Fayun, FAN Zhiping, WANG Qiong, WANG Fei, LI Wei, LIU Daosheng*(
)
Received:
2015-09-16
Online:
2016-03-10
Published:
2016-01-24
Contact:
HU Shaozheng,LIU Daosheng
E-mail:hushaozhenglnpu@163.com;liudaoshenglnpu@163.com
CLC Number:
TrendMD:
ZHANG Qian, HU Shaozheng, LI Fayun, FAN Zhiping, WANG Qiong, WANG Fei, LI Wei, LIU Daosheng. Preparation of Zn0.11Sn0.12Cd0.84S1.12/g-C3N4 Heterojunctions and Their Photocatalytic Performance Under Visible Light†[J]. Chem. J. Chinese Universities, 2016, 37(3): 521.
Fig.6 XPS spectra of as-prepared catalysts in the region of C1s(A), N1s(B), Zn2p(C), Sn2p(D), Cd2p(E) and S2p(F)(A), (B) a. CN; b. ZnSnCdS-CN(20%). (C)—(F) a. ZnSnCdS; b. ZnSnCdS(20%)-CN.
Fig.7 Photoluminescence(PL) emission spectra of as-prepared catalystsa. CN; b. ZnSnCdS; c. ZnSnCdS-CN(80%); d. ZnSnCdS- CN(50%); e. ZnSnCdS-CN(10%); f. ZnSnCdS-CN(20%).
Fig.10 Photocatalytic RhB degradation performance over other three ternary metal sulfide/g-C3N4 catalystsa. NiSnCdS; b. g-C3N4; c. MoNiCdS; d. ZnMoCdS; e. NiSnCdS-CN(20%); f. MoNiCdS-CN(20%); g. ZnMoCdS-CN(20%).
[1] | Kondo K., Murakami N., Ye C., Tsubota T., Ohno T., Appl. Catal. B: Environ., 2013, 142/143(1), 362—367 |
[2] | HARI Bala, Guo J. Y., Aruna., Yuan G. Y., Zhang Z. Y., Liu Z. R., Chem. J. Chinese Univeisities, 2012, 33(12), 2716—2721 |
(哈日巴拉, 郭金毓, 阿茹娜 ,原光瑜 , 张占营 , 刘宗瑞 . 高等学校化学学报, 2012, 33(12), 2716—2721) | |
[3] | Zhang G. G., Zhang M. W., Ye X. X., Qiu X. Q., Lin S., Wang X. C., Adv. Mater., 2014, 26(5), 805—809 |
[4] | Xu J., Wu H. T., Wang X., Xue B., Li Y. X., Cao Y., Phys. Chem. Chem. Phys., 2013, 15(13), 4510—4517 |
[5] | Ge L., Mater Lett., 2011, 65(17/18), 2652—2654 |
[6] | Niu P., Zhang L., Liu G., Cheng H., Adv. Funct. Mater., 2012, 22(22), 4763—4770 |
[7] | Zhang Q., Wang H. Y., Hu S. Z., Lu G., Bai J., Liu D., Gui J. G., RSC Adv., 2015, 5(1), 42736—42743 |
[8] | Hu J. S., Ren L. L., Guo Y. G., Liang H. P., Cao A. M., Wan L. J., Bai C. L., Angew. Chem. Int. Ed., 2012, 44(8), 1269—1273 |
[9] | Yan H. J., Yang J. H., Ma G. J., Wu G. P., Zong X., Lei Z. B., Shi J. Y., Li C., J. Catal., 2009, 266(2), 165—168 |
[10] | Huo Y. N., Yang X. L., Zhu J., Li H. X., Appl. Catal. B: Environ., 2011, 106(1/2), 69—75 |
[11] | Mei Z., Ouyang S., Tang D. M., Kako T., Golberg D., Ye J., Dalton Trans., 2013, 42(8), 2687—2690 |
[12] | Fan Y. H., Luo Q., Liu G. X., Wang J. X., Dong X. T., Yu W. S., Sun D., Chin. J. Inorg. Chem., 2014, 30(3), 627—632 |
(范英华, 雒琴, 刘桂霞, 王进贤, 董相廷, 于文生, 孙德. 无机化学学报, 2014, 30(3), 627—632) | |
[13] | Lu Y. H., Wu P. X., Huang J. Y., Chen L. X., Zhu N. W., Dang Z., Chem. J. Chinese Universities, 2015, 36(8), 1563—1569 |
(卢勇宏, 吴平宵, 黄俊毅, 陈理想, 朱能武, 党志. 高等学校化学学报, 2015, 36(8), 1563—1569) | |
[14] | Xia S., Lei W., Yang Y. L., Nanoscale Res. Lett., 2011, 6(40), 562—567 |
[15] | Yong X., Schoonen M. A. A., Am. Mineral., 2000, 85(3/4), 543—556 |
[16] | Ge L., Han C. C., Xiao X. L., Guo L. L., Int. J. Hydrogen Energy, 2013, 38(17), 6960—6969 |
[17] | Sun M., Yan T., Yan Q, Liu H. Y., Yan L. G., Zhang Y. F., Du B., RSC Adv., 2014, 4(38), 19980—19986 |
[18] | Hu S. Z., Li F. Y., Fan Z. P., Wang F., Zhao Y. F., Lv Z. B., Dalton Trans., 2015, 44(1), 1084—1092 |
[19] | Li D., Wu Z. D., Xing C. S., Jiang D. L., Chen M., Shi W. D., Yuan S. Q., J. Mol. Catal. A: Chem., 2014, 395(1), 261—268 |
[20] | Chen W., Chen Z. L., Liu T. Y., Jia Z. M., Liu X. H., J. Environ. Chem. Eng., 2014, 2(3), 1889—1897 |
[21] | Wang D. S., Duan Y. D., Luo Q. Z., Li X. Y., Bao L. L., Desalination,2011, 270(1—3), 174—180 |
[22] | Lu M. L., Pei Z. X., Weng S. X., Feng W. H., Fang Z. B., Zheng Z. Y., Huang M. L., Liu P., Phys. Chem. Chem. Phys., 2014, 16(39), 21280—21288 |
[23] | Sun M., Yan Q., Yan T., Li M. M., Wei D., Wang Z. P., Wei Q., Du B., RSC Adv., 2014, 4(1), 31019—31027 |
[24] | Liu L. Y., Yang L., Pu Y. T., Xiao D. Q., Zhu J. G., Mater. Lett., 2012, 66(1), 121—124 |
[25] | Ge L., Han C. C., Liu J., Appl. Catal. B: Environ., 2011, 108109(1), 100—107 |
[26] | Joyce S. R., Thirumala R. G., Pushpa M. V., Babu B., Rama K. C., Ravikumar R. V. S. S. N.,J. Alloys Comp., 2015, 628(1), 39—45 |
[27] | Kiruthigaa G., Manoharan C., Raju C., Dhanapandian S., Thanikachalam V., Mater. Sci. Semicon. Proc., 2014, 26(1), 533—539 |
[28] | GÄrd R., Sun Z. X., Forsling W., J. Alloys Comp., 1995, 169(2), 393—399 |
[29] | Ma D. K., Zhou H. Y., Zhang J. H., Qian Y. T., J. Mater. Chem. Phys., 2008, 111(2/3), 391—395 |
[30] | Liu H., Su Y., Chen P., Wang Y., J. Mol. Catal. A: Chem., 2013, 378(1), 285—292 |
[31] | Liu H., Jin Z. T., Xu Z. Z., Dalton Trans., 2015, 44(1), 14368—14375 |
[32] | Dong F., Zhao Z. W., Xiong T., Ni Z. L., Zhang W. D., Sun Y. J., Ho W. K., ACS Appl. Mater. Interf., 2013, 5(21), 11392—11401 |
[33] | Cao J., Luo B. D., Lin H. L., Xu B. Y., Chen S. F., J. Hazard. Mater., 2012, 217218(1), 107—115 |
[34] | Wang Y., Wang X. C., Antonietti M., Angew. Chem. Int. Ed., 2012, 51(1), 68—89 |
[35] | Ge L., Han C., Appl. Catal. B: Environ., 2012, 117118(1), 268—274 |
[36] | Zhu Y. P., Li J., Ma T. Y., Liu Y. P., Du G. H., Yuan Z. Y., J. Mater. Chem. A, 2014, 2(1), 1093—1101 |
[37] | Zhang K., Kim W. J., Ma M., Shi X. J., Park J. H., J. Mater. Chem. A, 2015, 3(1), 4803—4810 |
[38] | Li Y. G., Wei X. L., Li H. J., Wang R. R., Feng J., Yun H., Zhou A. N., RSC Adv., 2015, 5(1), 14074—14080 |
[39] | Liu G., Niu P., Sun C. H., Smith S. C., Chen Z. G., Lu G. Q., Cheng H. M., J. Am. Chem. Soc., 2010, 132(33), 11642—11648 |
[40] | Jin R. R., You J. G., Zhang Q., Liu D., Hu S. Z., Gui J. Z., Acta Phys-Chim. Sin., 2014, 30(9), 1706—1712 |
(金瑞瑞, 游继光, 张倩, 刘丹, 胡绍争, 桂建舟. 物理化学学报,2014, 30(9), 1706—1712) | |
[41] | Zhang J., Wang Y. J., Hu S. Z., Acta Phys-Chim. Sin., 2015, 31(1), 159—165 |
(张健, 王彦娟, 胡绍争. 物理化学学报,2015, 31(1), 159—165) | |
[42] | Ji L., Wang H. R., Yu R. M., Chem. J. Chinese Universities, 2014, 35(10), 2170—2176 |
(姬磊, 王浩人, 于瑞敏. 高等学校化学学报,2014, 35(10), 2170—2176) |
[1] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[2] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[3] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[4] | LIU Suyu, DING Fei, LI Qian, FAN Chunhai, FENG Jing. Azobenzene-integrated DNA Nanomachine [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220122. |
[5] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[6] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[7] | ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2 [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255. |
[8] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[9] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[10] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[11] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[12] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[13] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
[14] | LI Lun, ZHANG Jingyan, LUO Jing, LIU Ren, ZHU Yi. Synthesis and Properties of UV/Vis-LED Excitable Photoinitiators Based on Coumarin Pyridinium Salt [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220178. |
[15] | ZHANG Xiaofei, LIU Jiaxin. Visible Light Induced Cyclization of O-Alkenylcarboxanilide to 2-Quinolinone [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||